Cho hình thang ABCD(AB//CD,AB<CD).I,J là trung điểm của BD và AC.CMR: IJ //AB;IJ=CD-AB/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = x2 + 4x + 7
= ( x2 + 4x + 4 ) + 3
= ( x + 2 )2 + 3
( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 3 ≥ 3
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MinA = 3 <=> x = -2
B = 2x2 - 6x
= 2( x2 - 3x + 9/4 ) - 9/2
= 2( x - 3/2 )2 - 9/2
2( x - 3/2 )2 ≥ 0 ∀ x => 2( x - 3/2 )2 -9/2 ≥ -9/2
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MinB = -9/2 <=> x = 3/2
C = -2x2 + 8x - 15
= -2( x2 - 4x + 4 ) - 7
= -2( x - 2 )2 - 7
-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxC = -7 <=> x = 2
Sửa lại đề là: \(3x^2+10x+3\)
\(=3x^2+9x+x+3\)
\(=\left(3x^2+9x\right)+\left(x+3\right)\)
\(=3x.\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+3\right).\left(3x+1\right)\)
Bài làm:
a) Ta có: \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\left(\forall x\right)\)
=> đpcm
b) \(x^4+3x^2+3=\left(x^4+3x^2+\frac{9}{4}\right)+\frac{3}{4}=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(\forall x\right)\)
=> đpcm
a) -x2 + 4x - 5 = -x2 + 4x - 4 - 1
= -( x2 - 4x + 4 ) - 1
= -( x - 2 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )
b) x4 + 3x2 + 3 ( * )
Đặt t = x2
(*) <=> t2 + 3t + 3
<=> ( t2 + 3t + 9/4 ) + 3/4
<=> ( t + 3/2 )2 + 3/4
<=> ( x2 + 3/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )
Bài làm:
Lớp 8 phân tích cái này thì hơi ngô khoai đấy cơ bằng đổi thành:
\(\orbr{\begin{cases}x^2-x-20\\x^2+x-20\end{cases}}\) thì còn dễ phân tích
Mạn phép sửa đề nhé:)
\(\orbr{\begin{cases}x^2-x-20\\x^2+x-20\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x^2+4x\right)-\left(5x+20\right)\\\left(x^2-4x\right)+\left(5x-20\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x+4\right)\left(x-5\right)\\\left(x-4\right)\left(x+5\right)\end{cases}}\)
Còn nếu như giữ nguyên đề thì phân tích không ra đâu nhé:)
Nếu giữ nguyên thì ...
\(x^2+x+20\)
\(=\left(x^2+2\cdot\frac{1}{2}\cdot x+\frac{1}{4}\right)+\frac{79}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{79}{4}\ge\frac{79}{4}>0\forall x\)
> 0 thì lấy đâu ra nghiệm :)
Bài làm:
Ta có: \(\left(a-b-c\right)^2\)
\(=\left[a-\left(b+c\right)\right]^2\)
\(=a^2-2a\left(b+c\right)+\left(b+c\right)^2\)
\(=a^2-2ab-2ac+b^2+2bc+c^2\)
\(=a^2+b^2+c^2-2ab+2bc-2ac\)
( a - b - c )2
= [ ( a - b ) - c ]2
= ( a - b )2 - 2( a - b )c + c2
= a2 - 2ab + b2 - 2ac + 2bc + c2
= a2 + b2 + c2 - 2ab + 2bc - 2ac ( đpcm )
( a - b + c )2
= [ ( a - b ) + c ]2
= ( a - b )2 + 2( a - b )c + c2
= a2 - 2ab + b2 + 2ac - 2bc + c2
= a2 + b2 + c2 - 2ab - 2bc + 2ca ( đpcm )
\(\left(a-b+c\right)^2\)
\(=\left(a-b+c\right).\left(a-b+c\right)\)
\(=a.\left(a-b+c\right)-b.\left(a-b+c\right)+c.\left(a-b+c\right)\)
\(=a^2-ab+ac-\left(ab-b^2+bc\right)+ac-bc+c^2\)
\(=a^2-ab+ac-ab+b^2-bc+ac-bc+c^2\)
\(=a^2-2ab+2ac+b^2-2bc+c^2\)
\(=a^2+b^2+c^2-2ab-2bc+2ac\)
\(\Rightarrow\left(a-b+c\right)^2=a^2+b^2+c^2-2ab-2bc+2ac\left(đpcm\right).\)
\(=x^2-4x-5x+20\)
\(=x\left(x-4\right)-5\left(x-4\right)\)
\(=\left(x-4\right)\left(x-5\right)\)
x2 - 9x + 20
= x2 - 4x - 5x + 20
= x( x - 4 ) - 5( x - 4 )
= ( x - 4 )( x - 5 )
mình ghi thiếu nhé mn
Bổ sung:AB<CD).I,J là trung điểm của BD và AC.CMR: IJ //AB ; IJ=CD-AB/2