Hai vòi nước cùng chảy vào một bể không có nước thì sau 12 giờ sẽ đầy bể. Nếu mở vòi 1 chảy trong 4 giờ rồi khóa lại và mở tiếp vòi 2 chảy trong 3 giờ thì được 3/10 bể. Hỏi nếu mỗi vòi chảy một mình thì sau bao lâu sẽ đầy bể?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt AM-GM dạng \(a+b\ge2\sqrt{ab}\)ta có
\(P^2=x+y+2+2\sqrt{\left(x+1\right)\left(y+1\right)}\)
\(\le x+y+2+\left(x+1\right)+\left(y+1\right)=202\)
\(\Rightarrow P\le\sqrt{202}\)
Dấu "=" xảy ra khi \(x=y=\frac{99}{2}\)
Áp dụng bất đẳng thức bu - nhi - a - cốp - ski cho 2 cặp số ( \(\sqrt{x+1},\sqrt{y+1}\)) và ( 1 , 1 )
\(\sqrt{x+1}+\sqrt{y+1}\le\left(x+1+y+1\right).\left(1+1\right)\)= 2.101 = 202
Dấu bằng xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{\sqrt{x+1}}{1}=\frac{\sqrt{y+1}}{1}\\x+y=99\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+1}=\sqrt{y+1}\\x+y=99\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{99}{2}\\y=\frac{99}{2}\end{cases}}\)
\(P=\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{\left(a+b+c\right)^3}{abc}\)
\(\ge\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{9\left(a+b+c\right)^2}{ab+bc+ca}\)
\(=\left[\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\right]+\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+18\)
\(\ge2+8+18=28\)
Đẳng thức xảy ra khi \(a=b=c\)
A B C H P Q
Xét tứ giác APHQ có :
Góc A + Góc APH + Góc PHQ + Góc AQH = 360o
\(\Rightarrow\)Góc A + 90o + Góc PHQ + 90o = 360o
\(\Rightarrow\)Góc A + Góc PHQ = 180o
\(\Rightarrow\)Góc A + Góc BHC = 180o (Do góc PHQ = góc BHC (Đối đỉnh))
\(\Rightarrow\)ĐPCM
\(ĐKXĐ:x\ge-1\)
\(2\left(x^2+2\right)=5\sqrt{x^3+1}\)
\(\Leftrightarrow2x^2+4=5\sqrt{x^3+1}\)
\(\Leftrightarrow4x^4+16x^2+16=25x^3+25\)
\(\Leftrightarrow25x^3+9-4x^4-16x^2=0\)
\(\Leftrightarrow-4x^4+5x^3-3x^2+20x^3-25x^2+15x+12x^2-15x+9=0\)
\(\Leftrightarrow-x^2\left(4x^2-5x+3\right)+5x\left(4x^2-5x+3\right)+3\left(4x^2-5x+3\right)=0\)
\(\Leftrightarrow-\left(4x^2-5x+3\right)\left(x^2-5x-3=0\right)\)
\(\Leftrightarrow\orbr{\begin{cases}4x^2-5x+3=0\left(ktm\right)\\x^2-5x-3=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5-\sqrt{37}}{2}\\x=\frac{5+\sqrt{37}}{2}\end{cases}}\)
Vậy tập nghiệm của phương trình là :\(S=\left\{\frac{5-\sqrt{37}}{2};\frac{5+\sqrt{37}}{2}\right\}\)
Gọi thời gian chảy của vòi thứ nhất để bể đầy là a giờ (a > 0)
\(\Rightarrow\)Thời gian chảy của vòi thứ 2 để bể đầy là a + 2 giờ
Đổi : 2 giờ 24 phút : = \(\frac{12}{5}\) giờ
\(\Rightarrow\)Nếu cả 2 vòi cùng chảy thì sau một giờ nước trong bể sẽ bằng : \(\frac{1}{\frac{12}{5}}=\frac{5}{12}\)(bể)
Ta có phương trình :
\(\frac{1}{a}+\frac{1}{a+2}=\frac{5}{12}\)
\(\Leftrightarrow\frac{12\left(a+2\right)+12a}{12a\left(a+2\right)}=\frac{5a\left(a+2\right)}{12a\left(a+2\right)}\)
\(\Leftrightarrow12a+24+12a=5a^2+10a\)
\(\Leftrightarrow-5a^2+14a+24=0\)
\(\Leftrightarrow-5a^2-6a+20a+24=0\)
\(\Leftrightarrow-a\left(5a+6\right)+4\left(5a+6\right)=0\)
\(\Leftrightarrow\left(5a+6\right)\left(4-a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5a+6=0\\4-a=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{6}{5}\left(ktm\right)\\a=4\left(tm\right)\end{cases}}\)
Vậy thời gian vòi thứ nhất chảy 1 mình để đầy bể là 4 giờ
thời gian vòi thứ 2 chảy 1 mình để đầy bể là 4 + 2 = 6 giờ.
Ta có: \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}=a\left(1-\frac{b^2}{1+b^2}\right)\)
Áp dụng bđt cô - si, ta có: \(1+b^2\ge2b\)
\(\Rightarrow a\left(1-\frac{b^2}{1+b^2}\right)\ge a\left(1-\frac{b^2}{2b}\right)=a-\frac{ab}{2}\)
Tương tự ta có: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\); \(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Cộng ba vế của các bđt trên, ta được:
\(\text{ Σ}_{cyc}\frac{a}{1+b^2}\ge\left(a+b+c\right)-\frac{ab+bc+ca}{2}\)
\(\ge\left(a+b+c\right)-\frac{\left(a+b+c\right)^2}{6}\ge\frac{3}{2}\)
(Dấu "=" khi a = b = c = 1)
Gọi thời gian vòi 1 chảy một mình đầy bể là x ( giờ ) (x>0),thời gian vòi 2 chảy một mình đầy bể là y ( giờ ) (y>0)
Trong 1 giờ vòi 1 chảy được 1/x ( bể)
Trong 1 giờ vời 2 chảy được 1/y (bể)
Trong 1 giờ cả hai vòi chảy được 1/12 ( bể )
=> ta có phương trình 1/x + 1/y = 1/12 (1)
Trong 4 giờ vòi 1 chảy được 4/x (bể ), trong 3 giờ vòi 2 chảy được 3/y (bể) được 3/10 bể nên ta có
4/x + 3/y = 3/10 (2)
Từ (1) và (2) ta có hệ phương trình
1/x +1/y =1/12
4/x+3/y = 3/10
(từ đây bạn tự giải tiếp nhé,chỉ cần giải xong hệ phương trinh ra x,y là ra kết quả rồi)