Cho đường thẳng y=(m-2)x+n với m≠2 Tìm m , n để đt trên cắt trục tung tại điểm có tung độ bằng 1+√22
và cắt trục hoành tại điểm có hoàn đọ bằng 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}S=2a-1\\S^2-2P=a^2+2a-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}S=2a-1\\P=\frac{3a^2-6a+4}{2}\end{cases}}\)
Để hệ có nghiệm thì
\(S^2\ge4P\)
\(\Leftrightarrow\frac{4-\sqrt{2}}{2}\le a\le\frac{4+\sqrt{2}}{2}\)
Giờ tìm giá trị nhỏ nhất của
\(P=\frac{3a^2-6a+4}{2}\)dễ thấy \(P_{min}\)tại \(a=\frac{4-\sqrt{2}}{2}\)(Đoạn này không khó nên tự làm nha)
Ta có: \(\frac{\sqrt{x}+1}{\sqrt{x}+3}=\frac{\sqrt{x}+3-2}{\sqrt{x}+3}=1-\frac{2}{\sqrt{x}+3}\)
Lại có: \(\sqrt{x}+3\ge3\)nên:
\(\Rightarrow\frac{2}{\sqrt{x}+3}\le\frac{2}{3}\)
\(\Rightarrow1-\frac{2}{\sqrt{x}+3}\ge1-\frac{2}{3}=\frac{1}{3}\)
Dấu " = " xảy ra \(\Leftrightarrow\sqrt{x}+3=3\Rightarrow x=0\)
Vậy \(Min=\frac{1}{3}\Leftrightarrow x=0\)
Với x = 4.
\(\frac{\sqrt{4}}{\sqrt{4}-1}=\frac{2}{1}=2>0\)
Nên giá trị lớn nhất không thể bằng 0 được. Em thử xem mình sai chỗ nào??
Ta có: \(\frac{\sqrt{x}}{\sqrt{x}-1}=\frac{\sqrt{x}-1+1}{\sqrt{x}-1}=1+\frac{1}{\sqrt{x}-1}\)
Lại có: \(\sqrt{x}-1\ge-1\forall x\)nên:
\(\Rightarrow\frac{1}{\sqrt{x}-1}\le-1\)
\(\Rightarrow1+\frac{1}{\sqrt{x}-1}\le1-1=0\)
Dấu " = " xảy ra \(\Leftrightarrow x=0\)
Vậy \(Max=0\Leftrightarrow x=0\)
Xét \(\Delta COM\)và \(\Delta CED\)có:
\(\widehat{COM}=\widehat{CED}=90^0\)
\(\widehat{ECD}\): góc chúng
Do đó \(\Delta COM\)\(\approx\Delta CED\left(g.g\right)\)
\(\Rightarrow\frac{CO}{CE}=\frac{CM}{CD}\Leftrightarrow CM.CE=CO.CD=R.2R=2R^2\)(1)
\(\Delta OBD\)vuông tại O nên \(BD^2=OB^2+OD^2\)(định lý Pythagoras)
\(=R^2+R^2=2R^2\)(2)
Từ (1) và (2) suy ra \(CM.CE+BD^2=2R^2+2R^2=4R^2\)
(mình chỉ ghi gợi ý rồi bn tự làm nha)
a, gBMD nội tiếp đường tròn=> gBMD =90 độ
ABCD là hình vuông => gDOC = 90 độ
=> tứ giác ODME nội tiếp => gODM + gOEM = 180 độ
mà gOEM = gBEC => dpcm
b,gABM nội tiếp chắn cung AM
gACM nội tiếp chắn cung AM => gABM = gECM
gAMB nội tiếp chắn cung AB
gBMC nội tiếp chắn cung BC
mà cung AB = cung BC ( AB = BC )
=>gAMB = gEMC
=> hai tam giác đồng dạng vì có hai góc bằng nhau
Bài 1: Theo đề : \(2ab+6bc+2ac=7abc\) \(;a,b,c>0\)
Chia cả 2 vế cho \(abc>0\Rightarrow\frac{2}{c}+\frac{6}{a}+\frac{2}{b}=7\)
Đặt: \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow\hept{\begin{cases}x,y,z>0\\2z+6x+2y=7\end{cases}}\)
Khi đó: \(M=\frac{4ab}{a+2b}+\frac{9ac}{a+4c}+\frac{4bc}{b+c}=\frac{4}{2x+y}+\frac{9}{4x+z}+\frac{4}{y+z}\)
\(\Rightarrow M=\frac{4}{2x+y}+2x+y+\frac{9}{4x+z}+4x+z+\frac{4}{y+z}+y+z-\left(2x+y+4x+z+y+z\right)\)
\(=\left(\frac{2}{\sqrt{x+2y}}-\sqrt{x+2y}\right)^2+\left(\frac{3}{\sqrt{4x+z}}-\sqrt{4x+z}\right)^2+\left(\frac{2}{\sqrt{y+z}}-\sqrt{y+z}\right)^2+17\ge17\)
Khi: \(\hept{\begin{cases}x=\frac{1}{2}\\y=z=1\end{cases}}\Rightarrow M=17\)
\(Min_M=17\Leftrightarrow a=2;b=1;c=1\)
ミ★๖ۣۜBăηɠ ๖ۣۜBăηɠ ★彡 chém bài khó nhất rồi nên em xin mạn phép chém bài dễ ạ.
2/\(VT=\Sigma_{cyc}\frac{\left(x+y+z\right)^2-x^2}{x\left(x+y+z\right)+yz}=\Sigma_{cyc}\frac{\left(y+z\right)\left(2x+y+z\right)}{\left(x+y\right)\left(x+z\right)}\)
\(\ge\Sigma_{cyc}\frac{\left(y+z\right)\left(2x+y+z\right)}{\frac{\left(2x+y+z\right)^2}{4}}=\Sigma_{cyc}\frac{4\left(y+z\right)}{2x+y+z}=\Sigma_{cyc}\frac{2\left(y+z-2x\right)}{2x+y+z}+6\)
\(=\Sigma_{cyc}\left(\frac{2\left(x+y+z\right)\left(y+z-2x\right)}{2x+y+z}-\frac{3}{2}\left(y+z-2x\right)\right)+6\)
\(=\Sigma_{cyc}\frac{\left(y+z-2x\right)^2}{2\left(2x+y+z\right)}+6\ge6\)