Cho tam giác ABC nhọn có trực tâm H. Gọi M,N lần lượt là chân đường cao hạ từ B,C của tam giác ABC. Lấy D thuộc BC( D khác B,C), (O1) là đường tròn đi qua các điểm C, D, M và (O2) là đường tròn đi qua các điểm B, D, N. Gọi DQ là đường kính của đường tròn (O1), Dp là đường kính của đường tròn (O2) . CMR: P,H,Q thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\hept{\begin{cases}x^2-3xy+y^2=-1\left(1\right)\\3x^2-xy+3y^2=13\left(2\right)\end{cases}}\)
Lấy (2) trừ (1)
\(\Rightarrow x^2+xy+y^2=7\) (3)
Từ (3) và (2)
\(\Leftrightarrow3x^2+3y^2-13+x^2+xy+y^2=7\)
\(\Leftrightarrow x^2+y^2=5\)(4)
Thay( 4) vào (1)
\(\Rightarrow xy=\frac{10}{3}\)
Thay xy vào (1)
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=\frac{7}{3}\\\left(x+y\right)^2=\frac{47}{3}\end{cases}}\)
=> tìm đc x ; y
cho mk hỏi: bạn lấy 2() trừ (1) mà sao ra x2 + xy + y2 vậy?
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).
Suy ra phương trình (1) luôn có nghiệm với mọi m.
b) Theo Vi-et ta có:
\(x_1+x_2=2m,x_1.x_2=m-4\)
Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)
\(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)
\(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)
\(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)
\(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)
\(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)
\(\Leftrightarrow m=0\)
Hình tự vẽ nha <3
Vẽ \(AH\)cắt \(BC\)tại \(K\)
Ta có: \(AK\perp BC\)
Gọi \(S\)(Khác \(D\)) là giao điểm của 2 đường trong \(O_1;O_2\)
Xét đường tròn \(O_1\)có: \(\widehat{SDB}=\widehat{SMC}\)
Ta có: \(\widehat{SMC}=\widehat{SNA}\Rightarrow AMSN\)nội tiếp.
Mặt khác: \(\widehat{HMA}=\widehat{HNA}=90^0\Rightarrow AMHN\) nội tiếp
Vì vậy 5 điểm \(A,M,S,H,N\)cùng thuộc đường tròn.
\(\widehat{NSA}=\widehat{NHA}\)Mà \(\widehat{NHA}=\widehat{DBN}\Rightarrow\widehat{NSA}=\widehat{DBN}\)
Ta có: \(\widehat{NSA}+\widehat{DSN}=\widehat{DBN}+\widehat{DSN}=180^0\)
\(\Rightarrow A,D,S\)thằng hàng.
Ta lại có: \(\widehat{ASH}=\widehat{HMA}=90^0\Rightarrow HS\perp DA\)
Và: \(\widehat{PSD}=90^0\)(Góc nội tiếp chắn đường tròn)
\(\Rightarrow PS\perp DA\)
Và: \(\widehat{QSD}=90^0\)(Góc nội tiếp chắn đường tròn)
\(\Rightarrow QS\perp DA\)
Từ trên ta suy ra: Các đường thẳng \(SH;PS;QS\)trùng nhau.
\(\Rightarrow P,H,Q\)thằng hàng (đpcm)