K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

Hình tự vẽ nha <3

Vẽ \(AH\)cắt \(BC\)tại \(K\)

Ta có: \(AK\perp BC\)

Gọi \(S\)(Khác \(D\)) là giao điểm của 2 đường trong \(O_1;O_2\)

Xét đường tròn \(O_1\)có: \(\widehat{SDB}=\widehat{SMC}\)

Ta có: \(\widehat{SMC}=\widehat{SNA}\Rightarrow AMSN\)nội tiếp.

Mặt khác:  \(\widehat{HMA}=\widehat{HNA}=90^0\Rightarrow AMHN\) nội tiếp

Vì vậy 5 điểm \(A,M,S,H,N\)cùng thuộc đường tròn.

\(\widehat{NSA}=\widehat{NHA}\)Mà \(\widehat{NHA}=\widehat{DBN}\Rightarrow\widehat{NSA}=\widehat{DBN}\)

Ta có: \(\widehat{NSA}+\widehat{DSN}=\widehat{DBN}+\widehat{DSN}=180^0\)

\(\Rightarrow A,D,S\)thằng hàng.

Ta lại có: \(\widehat{ASH}=\widehat{HMA}=90^0\Rightarrow HS\perp DA\)

Và: \(\widehat{PSD}=90^0\)(Góc nội tiếp chắn đường tròn)

\(\Rightarrow PS\perp DA\)

Và: \(\widehat{QSD}=90^0\)(Góc nội tiếp chắn đường tròn)

\(\Rightarrow QS\perp DA\)

Từ trên ta suy ra: Các đường thẳng \(SH;PS;QS\)trùng nhau.

\(\Rightarrow P,H,Q\)thằng hàng (đpcm)

5 tháng 2 2020

đề cho là một mảnh vườn có chu vi là 46m vậy tính chu vi mảnh vườn???

5 tháng 2 2020

xin lỗi

mình đánh sai 

Tính  chieu dài và chieu rộng của mảnh vườn

5 tháng 2 2020

a) \(\hept{\begin{cases}x^2-3xy+y^2=-1\left(1\right)\\3x^2-xy+3y^2=13\left(2\right)\end{cases}}\) 

Lấy (2) trừ (1)

\(\Rightarrow x^2+xy+y^2=7\) (3)

Từ (3) và (2)

\(\Leftrightarrow3x^2+3y^2-13+x^2+xy+y^2=7\)

\(\Leftrightarrow x^2+y^2=5\)(4)

Thay( 4) vào (1)

\(\Rightarrow xy=\frac{10}{3}\) 

Thay xy vào (1)

\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=\frac{7}{3}\\\left(x+y\right)^2=\frac{47}{3}\end{cases}}\)

=> tìm đc x ; y

cho mk hỏi: bạn lấy 2() trừ (1) mà sao ra x + xy + y2  vậy?

5 tháng 2 2020

bạn gõ công thức nhé

5 tháng 2 2020

a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).

Suy ra phương trình (1) luôn có nghiệm với mọi m.

b) Theo Vi-et ta có:

\(x_1+x_2=2m,x_1.x_2=m-4\)

Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)

   \(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)

    \(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)

   \(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)

  \(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)

  \(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)

  \(\Leftrightarrow m=0\)