tìm x
a,x(x+2018)-2x+4036=0
b,x+5=2(x+5)^2
c,(x^2+1)(2x-1)+2x=1
d,x/3-x^2/4=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này đề sửa thành: \(H=a+4b+1\) mk ms lm được ạ
Ta có: \(a=111...1\) (2020 chữ số 1)
\(a=111...1\cdot100...0+111...1\)
\(a=b.\left(9b+1\right)+b\)
Thay vào:
\(H=a+4b+1=b\left(9b+1\right)+b+4b+1=9b^2+6b+1=\left(3b+1\right)^2\)
=> đpcm
\(8x\left(x-2017\right)-2x+4034=0\)\(\Leftrightarrow8x\left(x-2017\right)-2\left(x-2017\right)=0\)
\(\Leftrightarrow2\left(x-2017\right)\cdot\left(4x-1\right)=0\)\(\Leftrightarrow\hept{\begin{cases}x-2017=0\\4x-1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2017\\x=\frac{1}{4}\end{cases}}\)
Vậy \(x=2017\)hoặc \(x=\frac{1}{4}\)
8x( x - 2017 ) - 2x + 4034 = 0
<=> 8x( x - 2017 ) - 2( x - 2017 ) = 0
<=> ( 8x - 2 )( x - 2017 ) = 0
<=> \(\orbr{\begin{cases}8x-2=0\\x-2017=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=2017\end{cases}}\)
3x4 - 8x3 + 16
Thử với x = 2 ta được :
3.24 - 8.23 + 16 = 0
Vậy x = 2 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì đa thức trên chia hết cho x - 2
Thực hiện phép chia 3x4 - 8x3 + 16 cho x - 2 ta được 3x3 - 2x2 - 4x - 8
=> 3x4 - 8x3 + 16 = ( x - 2 )( 3x3 - 2x2 - 4x - 8 )
Ta có : 3x3 - 2x2 - 4x - 8
= 3x3 + 4x2 + 4x - 6x2 - 8x - 8
= x( 3x2 + 4x + 4 ) - 2( 3x2 + 4x + 4 )
= ( x - 2 )( 3x2 + 4x + 4 )
Tổng kết : 3x4 - 8x3 + 16 = ( x - 2 )( x - 2 )( 3x2 + 4x + 4 ) = ( x - 2 )2( 3x2 + 4x + 4 )
Ta có: \(3x^4-8x^3+16=\left(3x^4-12x^3+12x^2\right)+\left(4x^3-16x^2+16x\right)+\left(4x^2-16x+16\right)\)
\(=3x^2.\left(x^2-4x+4\right)+4x.\left(x^2-4x+4\right)+4.\left(x^2-4x+4\right)\)
\(=\left(3x^3+4x+4\right)\left(x-2\right)^2\)
a) Thiếu VP
b) 4 - x = 2( x - 4 )2
<=> 4 - x = 2( x2 - 8x + 16 )
<=> 4 - x = 2x2 - 16x + 32
<=> 2x2 - 16x + 32 - 4 + x = 0
<=> 2x2 - 15x + 28 = 0
<=> 2x2 - 8x - 7x + 28 = 0
<=> 2x( x - 4 ) - 7( x - 4 ) = 0
<=> ( x - 4 )( 2x - 7 ) = 0
<=> \(\orbr{\begin{cases}x-4=0\\2x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{7}{2}\end{cases}}\)
c) ( x2 + 1 )( x - 2 ) + 2x = 4
<=> x3 - 2x2 + 3x - 2 - 4 = 0
<=> x3 - 2x2 + 3x - 6 = 0
<=> x2( x - 2 ) + 3( x - 2 ) = 0
<=> ( x - 2 )( x2 + 3 ) = 0
<=> x = 2 ( vì x2 + 3 ≥ 3 > 0 ∀ x )
a, thiếu
b, \(4-x=2\left(x-4\right)^2\Leftrightarrow4-x=2\left(x^2-8x+16\right)\)
\(\Leftrightarrow4-x=2x^2-16x+32\Leftrightarrow2x^2-15x+28=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x-7\right)=0\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{7}{2}\end{cases}}\)
c, \(\left(x^2+1\right)\left(x-2\right)+2x=4\Leftrightarrow x^3-2x^2+3x-6=0\Leftrightarrow x_1=2;x_2=\sqrt{3}i\)
Bài làm:
Ta có: \(2n\left(16-n^4\right)\)
\(=2n\left(4-n^2\right)\left(4+n^2\right)\)
\(=2n\left(2-n\right)\left(2+n\right)\left(4+n^2\right)\)
\(=-2n\left(n-2\right)\left(n+2\right)\left(4+n^2\right)\)
\(S=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\)
\(=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+4\)
Dễ có:\(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)
\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\ge\frac{2}{\frac{\left(a+b\right)^2}{4}}=\frac{8}{\left(a+b\right)^2}=8\)
Khi đó:\(S\ge\frac{1}{2}+8+4=\frac{25}{2}\)
Vậy ta có đpcm
a) x( x + 2018 ) - 2x - 4036 = 0
<=> x( x + 2018 ) - 2( x + 2018 ) = 0
<=> ( x + 2018 )( x - 2 ) = 0
<=> \(\orbr{\begin{cases}x+2018=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2018\\x=2\end{cases}}\)
b) x + 5 = 2( x + 5 )2
<=> x + 5 = 2( x2 + 10x + 25 )
<=> x + 5 = 2x2 + 20x + 50
<=> 2x2 + 20x + 50 - x - 5 = 0
<=> 2x2 + 19x + 45 = 0
<=> 2x2 + 10x + 9x + 45 = 0
<=> 2x( x + 5 ) + 9( x + 5 ) = 0
<=> ( x + 5 )( 2x + 9 ) = 0
<=> \(\orbr{\begin{cases}x+5=0\\2x+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-\frac{9}{2}\end{cases}}\)
c) ( x2 + 1 )( 2x - 1 ) + 2x = 1
<=> 2x3 - x2 + 4x - 1 - 1 = 0
<=> 2x3 - x2 + 4x - 2 = 0
<=> x2( 2x - 1 ) + 2( 2x - 1 ) = 0
<=> ( 2x - 1 )( x2 + 2 ) = 0
<=> \(\orbr{\begin{cases}2x-1=0\\x^2+2=0\end{cases}\Leftrightarrow}x=\frac{1}{2}\)( vì x2 + 2 ≥ 2 > 0 ∀ x )
d) \(\frac{x}{3}-\frac{x^2}{4}=0\)
\(\Leftrightarrow\frac{4x}{12}-\frac{3x^2}{12}=0\)
\(\Leftrightarrow\frac{4x-3x^2}{12}=0\)
\(\Leftrightarrow4x-3x^2=0\)
\(\Leftrightarrow x\left(4-3x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\4-3x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{4}{3}\end{cases}}\)