K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2020

a) \(m^2-n^2=\left(m-n\right)\left(m+n\right)\)

b) \(\frac{1}{4}-x^2=\left(\frac{1}{2}-x\right)\left(\frac{1}{2}+x\right)\)

c) \(x^2-6x+9=\left(x-3\right)^2\)

d) \(x^2+10x+25=\left(x+5\right)^2\)

29 tháng 8 2020

m2 - n2 = ( m - n )( m + n )

1/4 - x2 = ( 1/2 )2 - x2 = ( 1/2 - x )( 1/2 + x )

x2 - 6x + 9 = x2 - 2.3.x + 32 = ( x - 3 )2

x2 + 10x + 25 = x2 + 2.5.x + 52 = ( x + 5 )2

29 tháng 8 2020

                                                  A D B E C

Xét \(\Delta ABC\)có: \(DE//BC\)\(\Rightarrow\frac{BD}{AB}=\frac{CE}{AC}\)( hệ quả của định lý Ta lét )

mà \(DB=1,5cm\)\(AB=5cm\)

\(\Rightarrow\frac{CE}{AC}=\frac{1,5}{5}=\frac{3}{10}\)\(\Rightarrow CE=\frac{3}{10}.AC\)

mà \(AC+EC=13\)\(\Rightarrow AC+\frac{3}{10}.AC=13\)

\(\Rightarrow\frac{13}{10}.AC=13\)\(\Rightarrow AC=10\left(cm\right)\)

\(\Rightarrow EC=10.\frac{3}{10}=3\left(cm\right)\)\(\Rightarrow AE=AC-EC=10-3=7\left(cm\right)\)

Vậy \(AC=10cm\)\(EC=3cm\)\(AE=7cm\)

30 tháng 8 2020

Bài làm

y2+2(x2+1)=2y(x+1)

30 tháng 8 2020

Bài làm

Giải phương trình để tìm x bằng cách tìm a, b, và c của phương trình bậc hai sau đó áp dụng công thức phương trình bậc hai.

x= \(\frac{xy+y-2x}{2}\)

x=\(-\frac{xy-y-2x}{2}\)

Bạn mà sai mình khong chịu trách nhiệm đâu :))))

29 tháng 8 2020

a) ( 2x + 7 )( x2 + 9 ) > 0

Vì x2 + 9 > 0 ∀ x

Nên ta chỉ xét 2x + 7 > 0

                <=> x > -7/2

Vậy nghiệm của bất phương trình là x > -7/2

b) ( 3x - 2 )( x2 + 11 ) < 0 

Vì x2 + 11 > 0 ∀ x

Nên ta chỉ xét 3x - 2 < 0

                <=> 3x < 2

                <=> x < 2/3

Vậy nghiệm của bất phương trình là x < 2/3

c) \(\frac{2x+5}{x^2+4}\ge0\)

Vì x2 + 4 > 0 ∀ x

Nên ta chỉ xét 2x + 5 ≥ 0

                <=> 2x ≥ -5

                <=> x ≥ -5/2

Vậy nghiệm của bất phương trình là x ≥ -5/2

29 tháng 8 2020

a, \(\left(2x+7\right)\left(x^2+9\right)>0\)

Vì \(x^2+9>0\forall x\Rightarrow x>-\frac{7}{2}\)

b, \(\left(3x-2\right)\left(x^2+11\right)< 0\)

Vì \(x^2+11>0\Rightarrow x< \frac{2}{3}\)

29 tháng 8 2020

a) 6xy - 54xz2 = 6x( y - 9z2 )

b) x4 + 2x3 - 4x2 - 8x

= ( x4 + 2x3 ) - ( 4x2 + 8x )

= x3( x + 2 ) - 4x( x + 2 )

= ( x + 2 )( x3 - 4x )

= ( x + 2 )x( x2 - 4 )

= ( x + 2 )x( x - 2 )( x + 2 )

= ( x + 2 )2x( x - 2 )

c) 3x2 + 5x - 2

= 3x2 - x + 6x - 2

= x( 3x - 1 ) + 2( 3x - 1 )

= ( 3x - 1 )( x + 2 )

d) 5x2 + 6xy + y2

= 5x2 + 5xy + xy + y2

= 5x( x + y ) + y( x + y )

= ( x + y )( 5x + y )

e) -14x2 + 39x - 10

= -14x2 + 4x + 35x - 10

= -2x( 7x - 2 ) + 5( 7x - 2 )

= ( 7x - 2 )( 5 - 2x )

f) x3 + 2x2 - 25x - 50

= ( x3 + 2x2 ) - ( 25x + 50 )

= x2( x + 2 ) - 25( x + 2 )

= ( x + 2 )( x2 - 25 )

= ( x + 2 )( x - 5 )( x + 5 )

29 tháng 8 2020

ta có tam giác ADH vuông tại H
=> AH^2+HD^2=AD^2
=>HD^2=AD^2-AH^2
            =5^2-4^2
            =9
=>HD=3 cm
kẻ BK vuông góc với CD
=>ABKH là hình chữ nhật 
=>AH=BK=4cm 
tam giác BKC vuông tại K
=>BK^2+KC^2=BC^2
=>KC^2=BC^2-BK^2
            =80-16
           =64
=>KC=8 (cm)
lại có DH+HK+KC=20
=>HK=20-3-8=9 (cm)
=>AB+HK=9 cm
ta có chu vi hình thang ABCD là AB+BC+CD+DA=9+√80+20+5=34+√80(cm)
 

28 tháng 8 2020

Ta có: \(\left(a-b\right)\left(b-c\right)\left(a-c\right)+\left(a+b\right)\left(b+c\right)\left(a-c\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a-c\right).\left[\left(a-b\right)\left(b-c\right)+\left(a+b\right)\left(b+c\right)\right]+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a-c\right).\left(ab-ac-b^2+bc+ab+ac+b^2+bc\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a-c\right).\left(2ab+2bc\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=2b.\left(a-c\right).\left(a+c\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a+c\right)\left[2b\left(a-c\right)+\left(a+b\right)\left(c-b\right)\right]\)

    \(=\left(a+c\right)\left(2ab-2bc+ac-ab+bc-b^2\right)\)

    \(=\left(a+c\right)\left(ab-bc+ac-b^2\right)\)

    \(=\left(a+c\right)\left[a.\left(b+c\right)-b.\left(b+c\right)\right]\)

    \(=\left(a+c\right)\left(a-b\right)\left(b+c\right)\)

28 tháng 8 2020

Ta có: \(\left(a-b\right)\left(b-c\right)\left(a-c\right)+\left(a+b\right)\left(b+c\right)\left(a-c\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a-c\right).\left[\left(a-b\right)\left(b-c\right)+\left(a+b\right)\left(b+c\right)\right]+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a-c\right).\left(ab-ac-b^2+bc+ab+ac+b^2+bc\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a-c\right).\left(2ab+2bc\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=2b.\left(a-c\right).\left(a+c\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a+c\right)\left[2b\left(a-c\right)+\left(a+b\right)\left(c-b\right)\right]\)

    \(=\left(a+c\right)\left(2ab-2bc+ac-ab+bc-b^2\right)\)

    \(=\left(a+c\right)\left(ab-bc+ac-b^2\right)\)

    \(=\left(a+c\right)\left[a.\left(b+c\right)-b.\left(b+c\right)\right]\)

    \(=\left(a+c\right)\left(a-b\right)\left(b+c\right)\)

28 tháng 8 2020

A = a( b + 2 ) + b( 2 + b )

= a( b + 2 ) + b( b + 2 )

= ( a + b )( b + 2 )

Với a = 2 ; b = 3

A = ( 2 + 3 )( 3 + 2 ) = 5.5 = 25

B = b2 + b + c( b + 1 )

= b( b + 1 ) + c( b + 1 )

= ( b + c )( b + 1 )

Với b = 1 ; c = 2

B = ( 1 + 2 )( 1 + 1 ) = 6

C = xy( x - y ) - 2x + 2y

= xy( x - y ) - 2( x - y )

= ( x - y )( xy - 2 )

Với xy = 8 ; x - y = 5

C = 5.( 8 - 2 ) = 30

D = x( x + y ) - xy( x + y )

= ( x + y )( x - xy )

= ( x + y )x( 1 - y )

Với x = 1 ; y = -5

D = ( 1 - 5 ).1.[ 1 - ( -5 ) ] = -24

28 tháng 8 2020

Bài làm:

a) Ta có: \(x\left(x-3\right)-2x+6=0\)

\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

b) \(\frac{x}{3}+\frac{x^2}{2}=0\)

\(\Leftrightarrow\frac{3x^2+2x}{6}=0\)

\(\Leftrightarrow x\left(3x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{2}\end{cases}}\)

c) \(x-2=\left(x-2\right)^2\)

\(\Leftrightarrow x^2-4x+4+2-x=0\)

\(\Leftrightarrow x^2-5x+6=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

d) \(\left(x^2+3\right)\left(x+1\right)+x=-1\)

\(\Leftrightarrow\left(x^2+3\right)\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x^2+4\right)\left(x+1\right)=0\)

Vì \(x^2+4>\left(\forall x\right)\) => \(x=-1\)

28 tháng 8 2020

a. \(x\left(x-3\right)-2x+6=0\)

\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

b. \(\frac{x}{3}+\frac{x^2}{2}=0\)

\(\Leftrightarrow\frac{2x+3x^2}{6}=0\)

\(\Leftrightarrow x\left(2+3x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2+3x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{2}{3}\end{cases}}\)

c. \(x-2=\left(x-2\right)^2\)

\(\Leftrightarrow x-2-x^2+4x-4=0\)

\(\Leftrightarrow-\left(x-3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)

d. \(\left(x^2+3\right)\left(x+1\right)+x=-1\)

\(\Leftrightarrow x^3+x^2+3x+3+x+1=0\)

\(\Leftrightarrow x^3+x^2+4x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x^2=-4\left(vo-ly\right)\end{cases}}\)

<=> x = - 1