Cho a,b,c là các nghiệm của phương trình: \(x^3-3x+1=0\).
Lập phương trình bậc 3 có ba nghiệm \(a^2,b^2,c^2\).
Gợi ý luôn cho nhanh: Sử dụng định lý Vi-et.
.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đề đúng: \(\left(x^2+x\right)^2+4x^2+4x-12\)
\(=\left(x^2+x\right)+4\left(x^2+x\right)-12\)
Đặt \(x^2+x=y\)
BT = \(y^2+4y-12\)
\(=\left(y+2\right)^2-4^2\)
\(=\left(y-2\right)\left(y+6\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x-6\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x-2\right)\left(x+3\right)\)
b) Đặt \(x^2+x+1=y\)
=> BT = \(y\left(y+1\right)-12\)
\(=y^2+y-12\)
\(=\left(y-3\right)\left(y+4\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+6\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
B1:
a) \(5\left(x^2+y^2\right)-20x^2y^2\)
\(=5\left(x^2-4x^2y^2+y^2\right)\)
b) \(=2\left(x^8-16\right)=2\left(x^4-4\right)\left(x^4+4\right)=2\left(x^2-2\right)\left(x^2+2\right)\left(x^4+4\right)\)
B2:
a) Đặt \(x^2-3x+1=y\)
=> \(y^2-12y+27\)
\(=\left(y^2-12y+36\right)-9\)
\(=\left(y-6\right)^2-3^2\)
\(=\left(y-9\right)\left(y-3\right)\)
\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
\(=\left(x+1\right)\left(x-4\right)\left(x^2-3x-10\right)\)
b) Đặt \(x^2+7x+11=t\)
Ta có: \(\left[\left(x+2\right)\left(x+5\right)\right]\cdot\left[\left(x+3\right)\left(x+4\right)\right]-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(t-1\right)\left(t+1\right)-24\)
\(=t^2-25\)
\(=\left(t-5\right)\left(t+5\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
Đề đúng: \(C=x^2+4y^2+2x-4y-4xy+2011\)
\(C=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+2010\)
\(C=\left(x-2y\right)^2+2\left(x-2y\right)+1+2010\)
\(C=\left(x-2y+1\right)^2+2010\ge2010\)
Dấu "=" xảy ra khi: \(\left(x-2y+1\right)^2=0\)
=> Ta có vô số cặp (x;y) thỏa mãn ví dụ như:
(1;1) ; (-1;0) ; (3;2) ; ...
C = x2 + 4y2 + 2x - 4y - 4xy + 2011 ( đúng chưa :v )
C = [ ( x2 - 4xy + 4y2 ) + 2x - 4y + 1 ] + 2010
C = [ ( x - 2y )2 + 2( x - 2y ) + 1 ] + 2010
C = [ ( x - 2y ) + 1 ]2 + 2010
C = ( x - 2y + 1 )2 + 2010 ≥ 2010 ∀ x,y
Đẳng thức xảy ra <=> x - 2y + 1 = 0
<=> x - 2y = -1
<=> x = 2y - 1
=> MinC = 2011 <=> x = 2y - 1
\(DI//EM\)
\(\Rightarrow\frac{AI}{IM}=\frac{AD}{DE}=1\)
\(\Rightarrow AI=IM\left(đpcm\right)\)
\(\hept{\begin{cases}BE=ED\\BM=MC\end{cases}\Rightarrow EM\text{ là đường trung bình của tam giác }BDC}\)
\(\Rightarrow\text{EM //}\text{ DC}\)\(,\text{mà ED=DA }\Rightarrow\text{AI=IM}\)
a) 3x^3 - 75x
a^2 - b^2= (a+b)(a-c) trong đó a=x và b=5
3x(x+5)(x-5)
a) Mình không rảnh đặt phép chia, hệ số bất định vậy.
Giả sử khi A chia hết cho B thì sẽ được thương là x+c
\(\Rightarrow A=B\left(x+c\right)\)
\(\Leftrightarrow x^3+ax^2+2x+b=\left(x^2+2x+3\right)\left(x+c\right)\)
\(\Leftrightarrow x^3+ax^2+2x+b=x^3+\left(2+c\right)x^2+\left(3+2c\right)x+3c\)
\(\Leftrightarrow\hept{\begin{cases}a=2+c\\2=3+2c\\b=3c\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{3}{2}\\b=\frac{-3}{2}\\c=\frac{-1}{2}\end{cases}}\)
KL: \(a=\frac{3}{2};b=\frac{-3}{2}\)
b) Giải tương tự.
\(A=15-8x-x^2=-\left(x+4\right)^2+31\)
Vì \(\left(x+4\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+4\right)^2+31\le31\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x+4\right)^2=0\Leftrightarrow x=-4\)
Vậy maxA = 31 <=> x = - 4
\(B=4x-x^2+2=-\left(x-2\right)^2+6\)
Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-2\right)^2+6\le6\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy maxB = 6 <=> x = 2
a) \(A=15-8x-x^2=-\left(x^2+8x+16\right)-1\)
\(=-\left(x+4\right)^2-1\le-1\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left(x+4\right)=0\Rightarrow x=-4\)
b) \(B=4x-x^2+2=-\left(x^2-4x+4\right)+6\)
\(=-\left(x-2\right)^2+6\le6\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left(x-2\right)^2=0\Rightarrow x=2\)
c) Trang nghĩ nên sửa đề nhé:
\(C=-x^2-y^2+4x+4y+2\)
\(C=-\left(x^2-4x+4\right)-\left(y^2-4y+4\right)+10\)
\(C=-\left(x-2\right)^2-\left(y-2\right)^2+10\le10\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x-2\right)^2=0\\-\left(y-2\right)^2=0\end{cases}}\Rightarrow x=y=2\)
a) \(A=\left(3x-2\right)\left(3x+2\right)-\left(3x+1\right)^2-3.\left(-2x-1\right)\)
\(=\left(3x\right)^2-4-\left(9x^2+6x+1\right)+6x+3\)
\(=9x^2-4-9x^2-6x-1+6x+3\)
\(=-2\) không phụ thuộc vào x
b) \(B=\left(x+1\right)\left(x-1\right)-\left(x-2\right)^2-4.\left(x+3\right)\)
\(=x^2-1-\left(x^2-4x+4\right)-\left(4x+12\right)\)
\(=x^2-1-x^2+4x-4-4x-12\)
\(=-17\)không phụ thuộc vào x.