K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2020

giải giúp với :>

10 tháng 2 2020

:3 giải hộ với ạ plss:>

a, Xét tứ giác MEOF có \(\widehat{MEO}=\widehat{MFO}=90^0\)

=> Tứ giác MEOF nội tiếp (t/c)

=> 4 điểm M,E,O,F cùng thuộc đường tròn đường kính MO (1)

Xét tứ giác AFOM có : \(\widehat{MAO}=\widehat{MFO}=90^0\)

=> Tứ giác AFOM nội tiếp (t/c)

=> 4 điểm M,A,O,F cùng thuộc đường tròn đường kính MO (2)

Từ (1) và (2) => Năm điểm A, M, E, O, F cùng thuộc  đường tròn đường kính MO

9 tháng 2 2020

 \(\hept{\begin{cases}x^3-6x^2y+9xy^2-4y^3=0\left(1\right)\\\sqrt{x-y}+\sqrt{x+y}=2\left(2\right)\end{cases}}\)

ĐKXĐ: \(x\ge y\ge0\)

ta có: (1)\(\Leftrightarrow\left(x^3-y^3\right)-3y^3-9x^2y+3x^2y+9xy^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+3y\left(x^2-y^2\right)-9xy\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+3y\left(x+y\right)-9xy\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-5xy+4y^2\right)=0\)

\(\orbr{\begin{cases}x=y\\x^2-5xy+4y^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=y\\\left(x-y\right)\left(x-4y\right)=0\end{cases}}}\)\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=4y\end{cases}}\)

* Thay x=y vào phương trình (2), ta được: \(\sqrt{y-y}+\sqrt{2y}=2\Leftrightarrow y=2\Rightarrow x=y=2\)

* thay x=4y vào phương trình (2), ta được: \(\sqrt{4y-y}+\sqrt{4y+y}=2\)

\(\Leftrightarrow y=8-2\sqrt{15}\)\(\Rightarrow x=32-8\sqrt{15}\)

Vậy.......