K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2020

473 + 9.472 + 27.47 + 27

= 473 + 3.472.3 + 3.47.32 + 33

= ( 47 + 3 )3 ( HĐT số 4 )

= 503 = 125 000

2 tháng 9 2020

\(ĐKXĐ:x\ne y,x\ne0,y\ne0\)

Ta có : \(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy.\left(x-y\right)}\)

\(=\frac{3xy^2+x^2y-3x^2y-xy^2}{xy.\left(x-y\right)}\)

\(=\frac{-3xy.\left(x-y\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}=\frac{-2xy.\left(x-y\right)}{xy.\left(x-y\right)}=-2\)

2 tháng 9 2020

\(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy.\left(x-y\right)}\)

\(=\frac{3xy^2+x^2y}{xy\left(x-y\right)}+\frac{-\left(3x^2y+xy^2\right)}{xy.\left(x-y\right)}\)

\(=\frac{3xy^2+x^2y-3x^2y-xy^2}{xy.\left(x-y\right)}\)

\(=\frac{\left(3xy^2-3x^2y\right)+\left(x^2y-xy^2\right)}{xy.\left(x-y\right)}\)

\(=\frac{3xy.\left(y-x\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}\)

\(=\frac{-3xy.\left(x-y\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}\)

\(=\frac{\left(x-y\right).\left(-3xy+xy\right)}{xy.\left(x-y\right)}\)

\(=\frac{-3xy+xy}{xy}\)

\(=\frac{-2xy}{xy}\)

\(=-2.\)

2 tháng 9 2020

Ta có :

\(3^{15}+3^{16}+3^{17}\)

\(=3^{15}\cdot\left(1+3+3^2\right)=3^{15}\cdot13⋮13\)

\(\rightarrow3^{15}+3^{16}+3^{17}⋮13\left(đpcm\right)\)

2 tháng 9 2020

Ta có : \(3^{15}+3^{16}+3^{17}\)

\(=3^{15}\cdot\left(1+3+3^2\right)=3^{15}\cdot13⋮13\)

\(\Rightarrow3^{15}+3^{16}+3^{17}⋮13\)(đpcm)

2 tháng 9 2020

a. (a-b)^2 = (a-b)(a-b) = a^2 - ab - ba + b^2 = a^2 - 2ab + b^2

b. (a+b)^3= (a+b)(a+b)(a+b) = (a^2 + 2ab + b^2)(a + b) = a^3 + a^2b + 2a^2b + 2ab^2 + ab^2 + b^3 = a^3 + 3a^2b + 3b^2a + b^3

c. (a-b)^3= (a - b)(a-b)(a-b) = (a^2 - 2ab + b^2)(a - b) = a^3 - a^2b - 2a^2b + 2ab^2 + b^2a - b^3 = a^3 - 3a^2b + 3ab^2 - b^3

e. (a-b) ( a^2 + ab +b^2) = a^3 + a^2b + b^2a - ba^2 - ab^2 - b^3 = a^3 - b^3

g. ( a-b) ( a+b) = a^2 +ab -ab - b^2 = a^2 - b^2

2 tháng 9 2020

Đặt \(f\left(x\right)=3x^2-2x+1\)

Ta thấy : \(f\left(x\right)=3x^2-2x+1\)

\(=3.\left(x^2-\frac{2}{3}x+\frac{1}{3}\right)\)\(=3.\left(x^2-2\cdot x\cdot\frac{1}{3}+\frac{1}{9}+\frac{2}{9}\right)\)

\(=3.\left(x-\frac{1}{3}\right)^2+\frac{2}{3}>0\)

Do đó \(f\left(x\right)\) không có nghiệm.

2 tháng 9 2020

Ta có : \(\Delta=\left(-2\right)^2-4.3=4-12< 0\)

Vậy PT vô nghiệm 

2 tháng 9 2020

Bài 1 : \(\left(y+a\right)^3=y^3+3y^2a+3ya^2+a^3\)

Bài 2:

1. \(x^2-2x+1=\left(x-1\right)^2\)

2. \(x^2+2x+1=\left(x+1\right)^2\)

3. \(x^2-6x+9=\left(x-3\right)^2\)

4. \(x^2-10x+25=\left(x-5\right)^2\)

5. \(x^2+14x+49=\left(x+7\right)^2\)

6. \(x^2-22x+121=\left(x-11\right)^2\)

7. \(4x^2-4x+1=\left(2x-1\right)^2\)

8. \(x^2-4x+4=\left(x-2\right)^2\)

9. \(x^2-2xy+y^2=\left(x-y\right)^2\)

10. \(4x^2-4xy+y^2=\left(2x-y\right)^2\)

2 tháng 9 2020

Bài 1 : 

\(\left(y+a\right)^3=y^3+3y^2a+3ya^2+a^3\)

Bài 2 : mk lm tiếp phần còn lại thôi, mấy câu mk ko lm có ở bài trc rồi 

\(x^2+14x+49=\left(x+7\right)^2\)

\(x^2-22x+121=\left(x-11\right)^2\)

\(4x^2-4x+1=\left(2x-1\right)^2\)

\(x^2-4x+4=\left(x-2\right)^2\)

\(x^2-2xy+y^2=\left(x-y\right)^2\)

\(4x^2-4xy+y^2=\left(2x-y\right)^2\)

2 tháng 9 2020

B1: 

a) \(\left(x-4\right)\left(x+4\right)=x^2-16\)

b) \(\left(x-5\right)\left(x+5\right)=x^2-25\)

B2:

a) \(x^2-2x+1=\left(x-1\right)^2\)

b) \(x^2+2x+1=\left(x+1\right)^2\)

c) \(x^2-6x+9=\left(x-3\right)^2\)

2 tháng 9 2020

Bài 1 :

a) \(\left(x-4\right)\left(x+4\right)=x^2-4x+4-16=x^2-16\)

b) \(\left(x-5\right)\left(x+5\right)=x^2-5x+5x-25=x^2-25\)

Bài 2 :

a) \(x^2+2x+1=x^2-x-x+1\)

\(=x.\left(x-1\right)-\left(x+1\right)=\left(x-1\right)^2\)

b) \(x^2+2x+1=x^2+x+x+1\)

\(=x\left(x+1\right)+\left(x+1\right)=\left(x+1\right)^2\)

c) \(x^2-6x+9=x^2-3x-3x+9\)

\(=x.\left(x-3\right)-3.\left(x-3\right)=\left(x-3\right)^2\)

2 tháng 9 2020

Bài 1 :

a) \(\left(x-4\right)\left(x+4\right)=x^2-16\)

b) \(\left(x-5\right)\left(x+5\right)=x^2-25\)

Bài 2 :

a) \(x^2-2x+1=\left(x-1\right)^2\)

b) \(x^2+2x+1=\left(x+1\right)^2\)

c) \(x^2-6x+9=\left(x-3\right)^2\)

2 tháng 9 2020

1) a. (x - 4)(x + 4) = x2 - 4x + 4x - 16 = x2 - 16

b. (x - 5)(x + 5) = x2 - 5x + 5x - 25 = x2 - 25

2. x2 - 2x + 1 = x2 - x - x + 1 = x(x - 1) - (x - 1) = (x - 1)2

(x2 + 2x + 1) = x2 + x + x + 1 = x(x + 1) + (x + 1) = (x + 1)2

x2 - 6x + 9 = x2 - 3x - 3x + 9 = x(x - 3) -3(x - 3) = (x - 3)2 

2 tháng 9 2020

Bày này chỉ có đạt giá trị lớn nhất thôi nhé ! Bạn xem lại đề !

D E B A K M C

Lời giải :

Gọi \(M\) là trung điểm của \(BC.\) \(\Rightarrow AM\) không đổi.

Kẻ \(KM\perp DE\)

Khi đó tứ giác \(BDEC\) là hình thang. \(\left(BD//KM//EC\right)\)

Xét hình thang \(BDCE\) có : \(M\) là trung điểm của \(BC,\) \(BD//KM//EC\) ( cmt )

\(\Rightarrow K\) là trung điểm của \(DE\)

\(\Rightarrow KM\) là đường trung bình của hình thang \(BDEC\)

\(\Rightarrow BD+EC=2.KM\)

Mặt khác ta có : \(KM\le AM\) nên \(BD+EC\le2AM\) 

Dấu "=" xảy ra \(\Leftrightarrow xy\perp AM\)

Vậy \(BD+CE\) đạt giá trị lớn nhất là \(2AM\) \(\Leftrightarrow xy\perp AM\)

2 tháng 9 2020

A B C M E c

Gọi Cc là tia phân giác ngoài đỉnh C

Trên tia đổi của CB lấy điểm E sao cho AC = EC

=> \(\Delta ACE\)cân tại C 

Mà Cc là tia phân giác của góc \(\widehat{ACE}\)

=> Cc vừa là Tia phân giác vừa là đường trung trực của AE

=> MA = ME ( tc)

Ta có \(AC+CB\Leftrightarrow EC+CB\left(AC=EC\right)=BE\left(1\right)\)

         \(AM+BM\Leftrightarrow ME+BM\left(2\right)\)

Xét tam giác BME có 

\(BE< ME+BM\left(dl\right)\left(3\right)\)

Từ (1); (2) và (3)

\(\Rightarrow AC+BC< AM+BM\left(đpcm\right)\)