Cho phương trình \(x^2-mx-2=0\)
a/ Chứng minh phương trình có 2 nghiệm phân biệt vơi mọi m
b/ Tìm m sao cho \(x^2_1+x^2_2-3x_1x_2=14\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
a) Delta phương trình đó rồi xét 2 trường hợp
b) phần à delta lên sẽ tìm được m rồi thế vào là xong
Chắc vậy không chắc cho nắm
Bất đẳng thức phụ:
Với \(xy\le\) thì \(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+xy}\) ( biến đổi tương đương )
Áp dụng:\(\frac{1}{1+a}+\frac{1}{1+b}+2017ab\)
\(\le\frac{2}{1+ab}+2017ab\)
Đặt \(x=ab\le1\)
Khi đó:\(LHS\le\frac{2}{1+x}+2017x\)
Đến đây biến đổi tương đương chắc là ra nhỉ
Phá tung ngoặc
\(A=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\)
\(=a^2+2+\frac{1}{a^2}+b^2+2+\frac{1}{b^2}\)
\(=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}+4\)
\(\ge a^2+b^2+\frac{4}{a^2+b^2}+4\)
Đặt \(x=a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)
Làm nốt
Áp dụng bđt Bunhiacopski ta có
\(A=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2=\frac{\left(a+\frac{1}{a}\right)^2}{1}+\frac{\left(b+\frac{1}{b}\right)^2}{1}\ge\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}\right)^2}{2}=\frac{\left(1+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\)
mà \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=4\)
\(\Rightarrow A\ge\frac{\left(1+4\right)^2}{2}=\frac{25}{2}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
Mới thi hk1 bài nãy _._
a, \(\Delta=\left(-m\right)^2-4\left(-2\right)=m^2+8>0\forall m\in R\)
\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt \(\forall m\)
b, Theo vi-lét ta có: \(x_1+x_2=m\) và \(x_1x_2=-2\)
Ta có: \(x^2_1+x^2_2-3x_1x_2=14\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2=14\)
\(\Leftrightarrow m^2+10=14\)
\(\Leftrightarrow m^2=4\)
\(\Leftrightarrow m=\pm2\)
Vậy .............