Tìm nghiệm nguyên của phương trình X^4 -y^4-20x^2+28x^2=107
Giúp mình vớiiiiiiiiiiii
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
You tự vẽ hình:))
a) Xét tam giác ADK có KD=AD
=> tam giác ADK cân tại D
=> Góc DAK = góc DKA ( tính chất ) ( 1 )
+) Vì AB // CD ( ABCD là hình thang )
=> Góc BAK = góc DKA ( 2 góc sole trong ) ( 2 )
Từ (1) và (2) => góc DAK = góc BAK
=> AK là tia phân giác của góc A .
b) Ta có :
CD = AD + BC
<=> CD = KD + BC
<=> BC = CD - KD
<=> BC = KC
c) Tự làm nốt :))
Phải là: -3xk( mx2 + nx + p ) = 3xk+2 - 12xk+1 + 3xk mới đúng ạ:( Mình đánh nhầm đề )
Sửa đề : -3xk( mx2 + nx + p ) = 3xk+2 - 12xk+1 + 3xk
-3xk( mx2 + nx + p ) = 3xk+2 - 12xk+1 + 3xk
<=> -3mxk+2 - 3nxk+1 - 3pxk = 3xk+2 - 12xk+1 + 3xk
Đồng nhất hệ số ta được
\(\hept{\begin{cases}-3m=3\\-3n=-12\\-3p=3\end{cases}}\Leftrightarrow\hept{\begin{cases}m=-1\\n=4\\p=-1\end{cases}}\)
Vậy ...
\(m_{Fe}=n_{Fe}\cdot M_{Fe}=0,1×56=5,6\left(g\right)\)
\(m_{Mg}=n_{Mg}\cdot M_{Mg}=0,2×24=4,8\left(g\right)\)
Bài 4.
1) ( x + 3 )( x2 - 3x + 9 ) - x( x2 - 3 ) = 8( 5 - x )
<=> x3 + 27 - x3 + 3x = 40 - 8x
<=> 27 + 3x = 40 - 8x
<=> 3x + 8x = 40 - 27
<=> 11x = 13
<=> x = 13/11
2) ( 2x + 1 )3 + ( 2x + 3 )3 = 0
<=> [ ( 2x + 1 ) + ( 2x + 3 ) ][ ( 2x + 1 )2 - ( 2x + 1 )( 2x + 3 ) + ( 2x + 3 )2 ] = 0
<=> ( 2x + 1 + 2x + 3 )[ 4x2 + 4x + 1 - ( 4x2 + 8x + 3 ) + 4x2 + 12x + 9 ] = 0
<=> ( 4x + 4 )( 8x2 + 16x + 10 - 4x2 - 8x - 3 ) = 0
<=> ( 4x + 4 )( 4x2 + 8x + 7 ) = 0
<=> \(\orbr{\begin{cases}4x+4=0\\4x^2+8x+7=0\end{cases}}\)
+) 4x + 4 = 0
<=> 4x = -4
<=> x = -1
+) 4x2 + 8x + 7 = 0 (*)
Ta có 4x2 + 8x + 7 = ( 4x2 + 8x + 4 ) + 3 = ( 2x + 2 )2 + 3 ≥ 3 > 0 ∀ x
=> (*) không xảy ra
Vậy x = -1
Bài 5.
1) A = x2 - 2x + 2 = ( x2 - 2x + 1 ) + 1 = ( x - 1 )2 + 1 ≥ 1 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinA = 1 <=> x = 1
2) A = 4x2 + 4x + 5 = ( 4x2 + 4x + 1 ) + 4 = ( 2x + 1 )2 + 4 ≥ 4 ∀ x
Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2
=> MinA = 4 <=> x = -1/2
3) A = 2x2 + 3x + 3 = 2( x2 + 3/2x + 9/16 ) + 15/8 = 2( x + 3/4 )2 + 15/8 ≥ 15/8 ∀ x
Đẳng thức xảy ra <=> x + 3/4 = 0 => x = -3/4
=> MinA = 15/8 <=> x = -3/4
4) A = 3x2 + 5x = 3( x2 + 5/3x + 25/36 ) - 25/12 = 3( x + 5/6 )2 - 25/12 ≥ -25/12 ∀ x
Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6
=> MinA = -25/12 <=> x = -5/6
5) B = 2x - x2 - 4 = -( x2 - 2x + 1 ) - 3 = -( x - 1 )2 - 3 ≤ -3 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 12
=> MaxB = -3 <=> x = 1
6) -x2 - 4x = -( x2 + 4x + 4 ) + 4 = -( x + 2 )2 + 4 ≤ 4 ∀ x
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MaxB = 4 <=> x = -2
7) B = 3x - 2x2 - 2 = -2( x2 - 3/2x + 9/16 ) - 7/8 = -2( x - 3/4 )2 - 7/8 ≤ -7/8 ∀ x
Đẳng thức xảy ra <=> x - 3/4 = 0 => x = 3/4
=> MaxB = -7/8 <=> x = 3/4
8) B = x( 3 - x ) = -x2 + 3x = -( x2 - 3x + 9/4 ) + 9/4 = -( x - 3/2 )2 + 9/4 ≤ 9/4 ∀ x
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MaxB = 9/4 <=> x = 3/2
9) A = ( x - 1 )( x + 1 )( x + 2 )( x + 4 )
= [ ( x - 1 )( x + 4 ) ][ ( x + 1 )( x + 2 ) ]
= ( x2 + 3x - 4 )( x2 + 3x + 2 ) (*)
Đặt t = x2 + 3x - 4
(*) <=> t( t + 6 )
= t2 + 6t
= ( t2 + 6t + 9 ) - 9
= ( t + 3 )2 - 9
= ( x2 + 3x - 4 + 3 )2 - 9
= ( x2 + 3x - 1 )2 - 9 ≥ -9 ∀ x
=> MinA = -9 ( chỗ này mình không xét giá trị của x vì nghiệm nó xấu lắm '-' )
Chứng minh ?
x2 + y2 = ( x + y )2 - 2xy
<=> x2 + y2 = x2 + 2xy + y2 - 2xy
<=> x2 + y2 = x2 + y2 ( đúng )
=> đpcm
x2+y2=(x+y)2+2xy
x2+y2=x2+2xy+y2+2xy
x2+y2=x2+4xy+y2
<=> x2+y2-x2-y2-4xy=0
<=> -4xy=0
<=> xy=0
a)
pt <=> \(\left(2x^2-8xy+8y^2\right)+\left(7x^2-28x+28\right)=0\)
<=> \(2\left(x-2y\right)^2+7\left(x-2\right)^2=0\)
TA luôn có: \(2\left(x-2y^2\right)+7\left(x-2\right)^2\ge0\forall x;y\)
=> DẤU "=" XẢY RA <=> \(\hept{\begin{cases}2\left(x-2y\right)^2=0\\7\left(x-2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}y=1\\x=2\end{cases}}\)
b)
pt <=> \(x^2+2y^2+5z^2-2xy-4yz-2z+1=0\)
<=> \(\left(x^2-2xy+y^2\right)+\left(y^2-4yz+4z^2\right)+\left(z^2-2z+1\right)=0\)
<=> \(\left(x-y\right)^2+\left(y-2z\right)^2+\left(z-1\right)^2=0\)
LẬP LUẬN TƯƠNG TỰ NHƯ CÂU a ta cũng được:
DẤU "=" XẢY RA <=> \(\left(x-y\right)^2=\left(y-2z\right)^2=\left(z-1\right)^2=0\)
=> \(x=y=2;z=1\)