Cho (O;R) có hai dây cung AB, AC tùy ý ( O nằm trong góc BAC) kẻ đường kính AD
a) cm: góc BAD= góc BCD và BD vuông góc AB
b) Lấy E thuộc (O) sao cho điểm D là điểm chính giữa của cung nhỏ BE. Cm: CD là phân giác của góc BCF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bo de \(AD.AE=AC^2\) (ban tu chung minh nha , cu tam giac dong dang la ra )
xet \(AD+AE=AD+DH+AD+HE=AH+AD+DH=2AH\)
=> \(\frac{1}{AD}+\frac{1}{AE}=\frac{AD+AE}{AD.AE}=\frac{2AH}{AC^2}\) (1)
ta phai cm \(\frac{2AH}{AC^2}=\frac{2}{AK}\Leftrightarrow AH.AK=AC^2\) (2)
do H la trung diem DE => \(OH\perp DE=>\widehat{ABO}=\widehat{AHO}=\widehat{ACO}=90^0\)
=> A,B,O,H,C thuoc duong tron duong kinh AO
=> \(\widehat{AHC}=\widehat{ABC}\left(\frac{1}{2}sd\widebat{AC}\right)\)
ma \(\widehat{ABC}=\widehat{ACK}\) tinh chat 2 tiep tuyen cat nhau
=> \(\widehat{ACK}=\widehat{AHC}\) lai co \(\widehat{CAK}=\widehat{HAC}\)
=> \(\Delta AKC\approx\Delta ACH\left(g-g\right)\)
=> \(\frac{AK}{AC}=\frac{AC}{AH}\Leftrightarrow AK.AH=AC^2\) (3)
Tu (1),(2),(3) ta co dpcm
Gọi x,yx,y lần lượt là số học sinh dự thi của THCS A và B
Đk: 250>x,y>0250>x,y>0
Dựa vào đề bài, ta có hpt:
{x+y=25023x−35y=2{x+y=25023x−35y=2
{x=120y=130{x=120y=130
Vậy số học sinh dự thi THCS A là 120120 học sinh
số học sinh dự thi THCS B là 130130 học sinh
Hok tốt ^^
xet pt 1
\(x\left(2\sqrt{y-1}-x\right)+y\left(2\sqrt{x-1}-y\right)=0\) dk \(x,y\ge1\)
<=> \(x\left(2\sqrt{\left(y-1\right).1}-x\right)+y\left(2\sqrt{\left(x-1\right).1}-y\right)\)
\(\le x\left(y-1+1-x\right)+y\left(x-1-y\right)\) (bdt Cosi)
\(\le x\left(y-x\right)+y\left(x-y\right)=-\left(x^2-2xy+y^2\right)=-\left(x-y\right)^2\le0=Vp\)
dau = xay ra \(\hept{\begin{cases}x-1=1\\y-1=1\\x=y\end{cases}\Leftrightarrow x=y=2}\) tmdk
thay x=y=2 vao pt 2 ta thay thoa man
vay {x;y} ={2;2}
Bai nay a,b co nguyen ko ban , neu ko thi pt nay se co vo so nghiem (mik nghi the)