Cho tam giác ABC, kẻ đường cao AH. Gọi I và K theo thứ tự là các điểm đối xứng của H qua các cạnh AB và AC. Biết AH = \(2\sqrt{5}\) cm; BH = 4cm; CH = 5cm. (Cho mk xin cách vẽ hình, ko cần làm)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ACB và ADC, có \(\widehat{A}\) chung và \(\widehat{ACB}=\widehat{ADC}\left(gt\right)\), suy ra đpcm.
b) Từ câu a) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{AC}{AD}\) \(\Rightarrow AC^2=AB.AD\)
Kẻ phân giác BE của tam giác ABC. Vì \(\widehat{B}=2\widehat{C}\) nên \(\widehat{ABE}=\widehat{ADC}\) hay BE//CD. Mặt khác, \(\dfrac{EA}{EC}=\dfrac{BA}{BC}=\dfrac{4}{5}\) nên suy ra \(\dfrac{BA}{BD}=\dfrac{4}{5}\Leftrightarrow\dfrac{4}{BD}=\dfrac{4}{5}\Leftrightarrow BD=5\), suy ra \(AD=AB+BD=4+5=9\).
\(\Rightarrow AC^2=AB.AD=4.9=36\) \(\Rightarrow AC=6\).
Vậy \(AC=6\)
Dạ thưa cô, cái này em áp dụng tính chất đường phân giác trong tam giác ạ. Cái này lớp 9 được dùng luôn không cần chứng minh ạ.
Đặt y = 0, ta có:
-5x - 1 = 0
Giải phương trình trên, ta có:
-5x = 1
x = -1/5
Vậy, đồ thị hàm số y = -5x - 1 đi qua điểm (-1/5, 0).
a) Ta có:
- Gọi M là trung điểm của AC.
- Vì I là trung điểm của BC nên IM = MC.
- Vì I là trung điểm của BC nên BI = IC.
- Vì I là trung điểm của BC nên BM = MC.
- Vì I là trung điểm của BC nên MI song song với AH (do M là trung điểm của AC và I là trung điểm của BC).
- Vì MI song song với AH và IM = MC nên AH vuông góc với BC (do đường cao BD và CE cắt nhau tại H).
b) Ta có:
- K là điểm đối xứng của H qua I nên KH = HI.
- Vì KH = HI nên tam giác KHI là tam giác cân tại K.
- Vì KH = HI nên tam giác KHI là tam giác vuông tại K.
- Vì KH = HI nên tam giác KHI là tam giác đều.
- Vì tam giác KHI là tam giác đều nên góc HKI = 60 độ.
- Vì góc HKI = 60 độ nên góc BKH = 60 độ.
- Vì góc BKH = 60 độ nên tam giác ABK là tam giác vuông tại B.
c) Ta có:
- Vì CK // BD nên góc BCK = góc CBD.
- Vì CK // BD nên góc BKC = góc BDC.
- Vì góc BCK = góc CBD và góc BKC = góc BDC nên tam giác BCK và tam giác BDC có cặp góc tương đương.
- Vì tam giác BCK và tam giác BDC có cặp góc tương đương nên chúng tương đồng.
- Vì tam giác BCK và tam giác BDC tương đồng nên tỉ số đồng dạng giữa chúng là: BC/BD = BK/BD.
- Vì BC/BD = BK/BD nên BC = BK.
- Vì BC = BK nên tam giác ABK là tam giác cân tại B.
- Vì tam giác ABK là tam giác cân tại B nên BE = BA.
d) Ta có:
- Vì M là trung điểm của AC nên BM = MC.
- Vì DM vuông góc với BC nên góc BDM = 90 độ.
- Vì DM vuông góc với BC nên góc DMC = 90 độ.
- Vì góc BDM = 90 độ và góc DMC = 90 độ nên tam giác BDM và tam giác DMC là tam giác vuông tại D.
- Vì tam giác BDM và tam giác DMC là tam giác vuông tại D nên chúng tương đồng.
- Vì tam giác BDM và tam giác DMC tương đồng nên tỉ số đồng dạng giữa chúng là: BD/DM = DM/DC.
- Vì BD/DM = DM/DC nên BD.DC = DM^2.
- Vì BD.DC = DM^2 nên BD.DC - MC^2 = DM^2 - MC^2.
- Vì BD.DC - MC^2 = DM^2 - MC^2 nên MB.MC = DM^2 - MC^2.
c, A = \(\dfrac{2x+5}{x+1}\) (\(x\ne\) -1)
A \(\in\) Z ⇔ 2\(x\) + 5 ⋮ \(x\) + 1
2(\(x+1\)) + 3 ⋮ \(x\) + 1
3 ⋮ \(x\) + 1
\(x+1\) \(\in\)Ư(3) = { -3; -1; 1; 3}
\(x\) + 1 \(\in\) { -4; -2; 0; 2}
d, B = \(\dfrac{\left(x+4\right)x-2}{\left(x+4\right)}\) (\(x\ne\) -4)
B \(\in\) Z ⇔ (\(x+4\))\(x\) - 2 ⋮ \(x+4\)
2 ⋮ \(x+4\)
\(x+4\) \(\in\) Ư(2) = { -2; -1; 1; 2}
\(x\) \(\in\) { -6; -5; -3; -2}
Ta nhận thấy \(AH^2=\left(2\sqrt{5}\right)^2=20\) và \(BH.CH=4.5=20\) và \(AH\perp BC\) tại H nên tam giác ABC sẽ là tam giác vuông tại A. chỉ cần làm như sau:
Vẽ đường thẳng d bất kì. Trên đó lấy 3 điểm B, C, H sao cho H nằm giữa B và C thỏa mãn \(BH=4cm,CH=5cm\)
Sau đó, ta chỉ cần dựng đường thẳng qua H vuông góc với BC cắt đường tròn đường kính BC tại A là xong.
Sau đó ta xóa đi các chi tiết thừa và được hình vẽ đúng theo ycbt.
Lê Song Phương, em ơi, em vẽ hình đẹp quá, thế điểm I; K đối xứng với H qua AB và AC của cô đâu rồi nhỉ?
Bài này chỉ cần vẽ hình,nhưng cô tìm mãi vẫn chưa thấy I và K đâu em ha!