K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để tổng của M với đa thức \(x^2-2xy+y^2-2xz+z^2\) không chứa biến x thì \(M+x^2-2xy+y^2-2xz+z^2=y^2+z^2\)

=>\(M+x^2-2xy-2xz=0\)

=>\(M=-x^2+2xy+2xz\)

10 tháng 8 2024

Cho tam giác ABC vuông tại A,biết AB=3cm,AC=4cm,tính BC

loading... 

2
10 tháng 8 2024

\(a,A=x^2+y^2+2x-6y-2\\ =\left(x^2+2x+1\right)+\left(y^2-6y+9\right)-12\\ =\left(x+1\right)^2+\left(y-3\right)^2-12\)

Ta có:

`(x+1)^2>=0` với mọi x

`(y-3)^2>=0` với mọi y

`=>A=(x+1)^2+(y-3)^2-12>=-12` với mọi x,y

Dấu "=" xảy ra: `x+1=0` và `y-3=0`

`<=>x=-1` và `y=3` 

\(b,B=5x^2+y^2+z^2+4xy+2xz\\ =\left(4x^2+4xy+y^2\right)+\left(x^2+2xz+z^2\right)\\ =\left(2x+y\right)^2+\left(x+z\right)^2\)

Ta có:

`(2x+y)^2>=0` với mọi x,y

`(x+z)^2>=0` với mọi x,z 

`=>B=(2x+y)^2+(x+z)^2>=0` 

Dấu "=" xảy ra: `2x+y=0` và `x+z=0`

`<=>2x=-y=-2z` 

10 tháng 8 2024

\(c,C=2x^2+y^2+2xy-8x+2024\\ =\left(x^2+2xy+y^2\right)+\left(x^2-8x+16\right)+2008\\ =\left(x+y\right)^2+\left(x-4\right)^2+2008\)

Ta có:

`(x+y)^2>=0` với mọi x,y

`(x-4)^2>=0` với mọi x

`=>C=(x+y)^2+(x-4)^2+2008>=2008` 

Dấu "=" xảy ra: 

`x+y=0` và `x-4=0`

`<=>x=4` và `y=-4`

\(d,D=x^2-2xy+3y^2-2x+1997\\ =\left(x^2+y^2+1-2xy-2x+2y\right)+\left(2y^2-2y+\dfrac{1}{2}\right)+\dfrac{3991}{2}\\ =\left(-x+y+1\right)^2+2\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{3991}{2}\\ =\left(-x+y+1\right)^2+2\left(y-\dfrac{1}{2}\right)^2+\dfrac{3991}{2}\)

Ta có:

`(-x+y+1)^2>=0` với mọi x,y

`2(y-1/2)^2>=0` với mọi y 

`=>D=(-x+y+1)^2+2(y-1/2)^2+3991/2>=3991/2` 

Dấu "=" xảy ra: `-x+y+1=0` và `y-1/2=0`

`<=>y=1/2` và `x=3/2` 

10 tháng 8 2024

\(5,8a^3\left(a-b\right)-27\left(a-b\right)\\ =\left(a-b\right)\left(8a^3-27\right)\\ =\left(a-b\right)\left(2a-3\right)\left(4a^2+6a+9\right)\\ 6,27\left(a+b\right)-a^3\left(a+b\right)\\ =\left(a+b\right)\left(27-a^3\right)\\ =\left(a+b\right)\left(3-a\right)\left(9+3a+a^2\right)\\ 7,8a^3\left(2a-3b\right)+27\left(2a-3b\right)\\ =\left(2a-3b\right)\left(8a^3+27\right)\\ =\left(2a-3b\right)\left(2a+3\right)\left(4a^2-6a+9\right)\)

1
10 tháng 8 2024

Xét tứ giác MNPQ ta có:

\(\widehat{M}+\widehat{N}+\widehat{P}+\widehat{Q}=360^o\) (tổng các góc trong tam giác)\

\(\widehat{M}:\widehat{N}:\widehat{P}:\widehat{Q}=1:2:3:4\\ =>\dfrac{\widehat{M}}{1}=\dfrac{\widehat{N}}{2}=\dfrac{\widehat{P}}{3}=\dfrac{\widehat{Q}}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{\widehat{M}}{1}=\dfrac{\widehat{N}}{2}=\dfrac{\widehat{P}}{3}=\dfrac{\widehat{Q}}{4}=\dfrac{\widehat{M}+\widehat{N}+\widehat{Q}+\widehat{Q}}{1+2+3+4}=\dfrac{360^o}{10}=36^o\\ =>\widehat{M}=36^o\\ =>\dfrac{\widehat{N}}{2}=36^o=>\widehat{N}=72^o\\ =>\dfrac{\widehat{P}}{3}=36^o=>\widehat{P}=108^o\\ =>\dfrac{\widehat{Q}}{4}=36^o=>\widehat{Q}=144^o\) 

Vì: \(\widehat{M}+\widehat{Q}=36^o+144^o=180^o\) => MN//PQ => MNPQ là hình thang 

9 tháng 8 2024

Mn ơi giải giúp em với 

9 tháng 8 2024

Bài 1:

\(1,\left(y+3\right)^2\\ =y^2+2\cdot y\cdot3+3^2\\ =y^2+6y+9\\ 2,\left(x+3y\right)^2\\ =x^2+2\cdot x\cdot3y+\left(3y\right)^2\\ =x^2+6xy+9y^2\\ 3,\left(2x+3y\right)^2\\ =\left(2x\right)^2+3\cdot2x\cdot3y+\left(3y\right)^2\\ =4x^2+18xy+9y^2\\ 4,\left(4x^2+5y^4\right)\\ =\left(4x^2\right)^2+2\cdot4x^2\cdot5y^4+\left(5y^4\right)^2\\ =16x^4+40x^2y^4+25y^8\) 

9 tháng 8 2024

Bài 2: 

\(1,\left(x-1\right)^2\\ =x^2-2\cdot x\cdot1+1^2\\ =x^2-2x+1\\ 2,\left(1-5a\right)^2\\ =1^2-2\cdot1\cdot5a+\left(5a\right)^2\\ =1-10a+25a^2\\ 3,\left(3x-1\right)^2\\ =\left(3x\right)^2-2\cdot3x\cdot1+1^2\\ =9x^2-6x+1\\ 4,-\left(\dfrac{1}{3}x-3y\right)^2\\ =-\left[\left(\dfrac{1}{3}x\right)^2-2\cdot\dfrac{1}{3}x\cdot3y+\left(3y\right)^2\right]\\ =-\left(\dfrac{1}{9}x^2-2xy+9y^2\right)\\ =-\dfrac{1}{9}x^2+2xy-9y^2\)

9 tháng 8 2024

Gọi chiều dài màn hình là `x` (cm) 

ĐK: `x>0` 

Đổi: 17inch ≃ 43,18 (cm) 

Chiều cao màn hình là: `5/8x(cm)` 

Áp dụng định lý Pythagore ta có: 

\(x^2+\left(\dfrac{5}{8}x\right)^2=43,18^2\\ < =>x^2+\dfrac{25}{64}x^2=1864,5124\\ < =>\dfrac{79}{64}x^2=1864,5124\\ < =>x^2\approx1510,4\\ < =>x\approx38,9\left(cm\right)\left(x>0\right)\)

=> Chiều cao của màn hình là: `5/8*38,9≃24,3(cm)` 

Vậy: 

9 tháng 8 2024

Gọi x (cm) là chiều rộng màn hình (x > 0)

Chiều dài màn hình là:

loading...  Đổi 17 inch ≈ 43,2 cm

loading...  Theo đề bài, ta có phương trình:

loading...

loading...

loading...

loading...loading...

⇒ x ≈ 22,9 (cm)

Vậy chiều rộng màn hình là 22,9 cm, chiều dài màn hình là 22,9.1,6 ≈ 36,6 cm