Câu 1:
Đề thi học kì môn Hóa gồm 2 phần trắc nghiệm và tự luận. Trong ngân hàng đề thi có 10 đề trắc nghiệm và 8 đề tự luận. Vậy có bao nhiêu cách ra đề
Câu 2: Từ một đội công tác gồm 20 người cần cử ra một ban lãnh đạo gồm 1 đội trưởng, 1 đội phó, 1 kế toán. Hỏi có bao nhiêu cách cử?
Câu 3: Một hộp đựng có 10 viên bi trắng, 8 viên bi xanh và 2 viên bi đỏ. Một em bé muốn chonj1 viên bi để chơi. Hỏi có bao nhiêu cách chọn?
Câu 4: Từ tahnfh phố A đến thành phố B có thể đi bằng một trong các loại phương tiện đó là xe khách, tàu thủy hoặc máy bay. Giả sử có 10 chiếc xe khách, 6 chiếc tàu thủy, và 4 chiếc máy bay.Hỏi có tất cả bao nhiêu cách để đi từ thành phố A đến thành phố B
Câu 5: Trong trường THPT, khối 10 có 180 học sinh tham gia CLB toán học, 120 học sinh tham gia CLB ngoại ngữ, 50 học sinh tham gia cả 2 CLB và 100 học sinh không tham gia CLB nào.Hỏi khối 10 trường THPT đó có bao nhiêu học sinh?
Câu 6: Trong một trường THPT, khối 10 có 200 học sinh nam và 250 học sinh nữ
a) Có bao nhiêu cách chọn một học sinh ở khối 10 đi dự đại hội
b) Có bao nhiêu cách chọn 2 học sinh đi dự đại hội trong đó có 1 nam và 1 nữ
Câu 7: Chợ Bến Thành có 4 cổng ra và vào. Hỏi một người đi chợ:
a) Có mấy vách vào và ra chợ?
b) Có mấy vách vào và ra chợ bằng 2 cổng khác nhau?
Câu 8: Từ các số: 1,2,3,4,5,6,7. Có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau trong đó:
a) Chữ số đầu tiên là 6
b) Chữ số tận cùng không phải là 6
Câu 9: Xét các số tự nhiên gồm 5 chữ số khác nhau lập nên từ các chữ số 2,3,4,5,6.Hỏi trong đó có bao nhiêu số:
a)Bắt đầu bằng 23
b)Không bắt đầu bằng 2
c) Không bắt đầu bằng 246
a.
\(A\left(2;-3\right)\)
Do I là trung điểm AC \(\Rightarrow\left\{{}\begin{matrix}x_C=2x_I-x_A=0\\y_C=2y_I-y_A=5\end{matrix}\right.\)
\(\Rightarrow C\left(0;5\right)\)
\(\overrightarrow{AK}=\left(-3;5\right)\Rightarrow\) đường thẳng AB nhận \(\left(5;3\right)\) là 1 vtpt
Phương trình AB:
\(5\left(x+1\right)+3\left(y-2\right)=0\Leftrightarrow5x+3y-1=0\)
Do điểm D có hoành độ gấp đôi tung độ, gọi tọa độ D có dạng \(D\left(2d;d\right)\)
I là tâm hình bình hành nên I là trung điểm BD
\(\Rightarrow\left\{{}\begin{matrix}x_B=2x_I-x_D=2-2d\\y_B=2y_I-y_D=2-d\end{matrix}\right.\)
B thuộc đường thẳng AB nên thay tọa độ B vào pt AB ta được:
\(5\left(2-2d\right)+3\left(2-d\right)-1=0\)
\(\Rightarrow d=\dfrac{15}{13}\Rightarrow D\left(\dfrac{30}{13};\dfrac{15}{13}\right)\)
\(\Rightarrow B\left(-\dfrac{4}{13};\dfrac{11}{13}\right)\)
b.
Gọi A' là điểm đối xứng A qua Oy \(\Rightarrow A'\left(-2;-3\right)\)
\(\Rightarrow\overrightarrow{A'D}=\left(\dfrac{56}{13};\dfrac{54}{13}\right)=\dfrac{2}{13}\left(28;27\right)\)
Đường thẳng A'D nhận \(\left(27;-28\right)\) là 1 vtpt
Phương trình A'D:
\(27\left(x+2\right)-28\left(y+3\right)=0\Leftrightarrow27x-28y-30=0\)
Gọi M' là giao điểm của A'D với Oy
\(\Rightarrow M'\left(0;-\dfrac{15}{14}\right)\)
Do A' đối xứng A qua Oy nên: \(MA=MA'\)
\(\Rightarrow MA+MD=MA'+MD\ge A'D\)
Dấu "=" xảy ra khi và chỉ khi M, A', D thẳng hàng
Hay M là giao điểm của A'D và Oy
\(\Rightarrow M\) trùng M'
\(\Rightarrow M\left(0;-\dfrac{15}{14}\right)\)