K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 1 2024

a.

\(A\left(2;-3\right)\)

Do I là trung điểm AC \(\Rightarrow\left\{{}\begin{matrix}x_C=2x_I-x_A=0\\y_C=2y_I-y_A=5\end{matrix}\right.\) 

\(\Rightarrow C\left(0;5\right)\)

\(\overrightarrow{AK}=\left(-3;5\right)\Rightarrow\) đường thẳng AB nhận \(\left(5;3\right)\) là 1 vtpt

Phương trình AB:

\(5\left(x+1\right)+3\left(y-2\right)=0\Leftrightarrow5x+3y-1=0\)

Do điểm D có hoành độ gấp đôi tung độ, gọi tọa độ D có dạng \(D\left(2d;d\right)\)

 I là tâm hình bình hành nên I là trung điểm BD

\(\Rightarrow\left\{{}\begin{matrix}x_B=2x_I-x_D=2-2d\\y_B=2y_I-y_D=2-d\end{matrix}\right.\)

B thuộc đường thẳng AB nên thay tọa độ B vào pt AB ta được:

\(5\left(2-2d\right)+3\left(2-d\right)-1=0\)

\(\Rightarrow d=\dfrac{15}{13}\Rightarrow D\left(\dfrac{30}{13};\dfrac{15}{13}\right)\)

\(\Rightarrow B\left(-\dfrac{4}{13};\dfrac{11}{13}\right)\)

NV
17 tháng 1 2024

b.

Gọi A' là điểm đối xứng A qua Oy \(\Rightarrow A'\left(-2;-3\right)\)

\(\Rightarrow\overrightarrow{A'D}=\left(\dfrac{56}{13};\dfrac{54}{13}\right)=\dfrac{2}{13}\left(28;27\right)\)

Đường thẳng A'D nhận \(\left(27;-28\right)\) là 1 vtpt

Phương trình A'D:

\(27\left(x+2\right)-28\left(y+3\right)=0\Leftrightarrow27x-28y-30=0\)

Gọi M' là giao điểm của A'D với Oy 

\(\Rightarrow M'\left(0;-\dfrac{15}{14}\right)\)

Do A' đối xứng A qua Oy nên: \(MA=MA'\)

\(\Rightarrow MA+MD=MA'+MD\ge A'D\)

Dấu "=" xảy ra khi và chỉ khi M, A', D thẳng hàng

Hay M là giao điểm của A'D và Oy

\(\Rightarrow M\) trùng M'

\(\Rightarrow M\left(0;-\dfrac{15}{14}\right)\)

17 tháng 1 2024

Bài đâu bạn?

Câu 1: Đề thi học kì môn Hóa gồm 2 phần trắc nghiệm và tự luận. Trong ngân hàng đề thi có 10 đề trắc nghiệm và 8 đề tự luận. Vậy có bao nhiêu cách ra đề Câu 2: Từ một đội công tác gồm 20 người cần cử ra một ban lãnh đạo gồm 1 đội trưởng, 1 đội phó, 1 kế toán. Hỏi có bao nhiêu cách cử? Câu 3: Một hộp đựng có 10 viên bi trắng, 8 viên bi xanh và 2 viên bi đỏ. Một em bé muốn...
Đọc tiếp

Câu 1:

Đề thi học kì môn Hóa gồm 2 phần trắc nghiệm và tự luận. Trong ngân hàng đề thi có 10 đề trắc nghiệm và 8 đề tự luận. Vậy có bao nhiêu cách ra đề

Câu 2: Từ một đội công tác gồm 20 người cần cử ra một ban lãnh đạo gồm 1 đội trưởng, 1 đội phó, 1 kế toán. Hỏi có bao nhiêu cách cử?

Câu 3: Một hộp đựng có 10 viên bi trắng, 8 viên bi xanh và 2 viên bi đỏ. Một em bé muốn chonj1 viên bi để chơi. Hỏi có bao nhiêu cách chọn?

Câu 4: Từ tahnfh phố A đến thành phố B có thể đi bằng một trong các loại phương tiện đó là xe khách, tàu thủy hoặc máy bay. Giả sử có 10 chiếc xe khách, 6 chiếc tàu thủy,  và 4 chiếc máy bay.Hỏi có tất cả bao nhiêu cách để đi từ thành phố A đến thành phố B

Câu 5: Trong trường THPT, khối 10 có 180 học sinh tham gia CLB toán học, 120 học sinh tham gia CLB ngoại ngữ, 50 học sinh tham gia cả 2 CLB và 100 học sinh không tham gia CLB nào.Hỏi khối 10 trường THPT đó có bao nhiêu học sinh?

Câu 6: Trong một trường THPT, khối 10 có 200 học sinh nam và 250 học sinh nữ

a) Có bao nhiêu cách chọn một học sinh ở khối 10 đi dự đại hội

b) Có bao nhiêu cách chọn 2 học sinh đi dự đại hội trong đó có 1 nam và 1 nữ

Câu 7: Chợ Bến Thành có 4 cổng ra và vào. Hỏi một người đi chợ:

a) Có mấy vách vào và ra chợ?

b) Có mấy vách vào và ra chợ bằng 2 cổng khác nhau?

Câu 8: Từ các số: 1,2,3,4,5,6,7. Có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau trong đó:

a) Chữ số đầu tiên là 6

b) Chữ số tận cùng không phải là 6

Câu 9: Xét các số tự nhiên gồm 5 chữ số khác nhau lập nên từ các chữ số 2,3,4,5,6.Hỏi trong đó có bao nhiêu số:

a)Bắt đầu bằng 23

b)Không bắt đầu bằng 2

c) Không bắt đầu bằng 246

 

 

1
15 tháng 1 2024

Câu 5: Trong trường THPT, khối 10 có 180 học sinh tham gia CLB toán học, 120 học sinh tham gia CLB ngoại ngữ, 50 học sinh tham gia cả 2 CLB và 100 học sinh không tham gia CLB nào.Hỏi khối 10 trường THPT đó có bao nhiêu học sinh?

Bài làm:

Số HS K10 chỉ tham gia 1 CLB - CLB Toán:

180 - 50 = 130 (HS)

Số HS K10 chỉ tham gia 1 CLB - CLB Ngoại ngữ:

120 - 50 = 70 (HS)

K10 trường đó có số HS là:

130 + 70 + 50 + 100 = 350 (HS)

Đ.số: 350 HS

NV
13 tháng 1 2024

ĐKXĐ: \(\left\{{}\begin{matrix}x^2+x+1\ge0\left(1\right)\\x+\sqrt{x^2+x+1}\ge0\left(2\right)\end{matrix}\right.\)

Xét (1) \(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\) (luôn đúng)

Xét (2) \(\Leftrightarrow\sqrt{x^2+x+1}\ge-x\)

- Với \(x\ge0\) BPT luôn đúng

- Với \(x< 0\Rightarrow x^2+x+1\ge x^2\)

\(\Rightarrow x\ge-1\)

Vậy hàm số xác định khi \(x\ge-1\) hay \(D=[-1;+\infty)\)

13 tháng 1 2024

Tham khảo các câu hỏi tương tự

https://olm.vn/cau-hoi/ysqrtxsqrtx2x1-tim-tap-xac-dinh.8752546570110

NV
11 tháng 1 2024

a.

Gọi tọa độ D có dạng \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(1;3\right)\\\overrightarrow{DC}=\left(4-x;4-y\right)\end{matrix}\right.\)

ABCD là hình bình hành \(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}4-x=1\\4-y=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\) \(\Rightarrow D\left(3;1\right)\)

b.

Gọi I là giao 2 đường chéo

Do giao điểm 2 đường chéo hình bình hành là trung điểm AC nên theo công thức trung điểm:

\(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_C}{2}=\dfrac{5}{2}\\y_I=\dfrac{y_A+y_C}{2}=\dfrac{5}{2}\end{matrix}\right.\) \(\Rightarrow I\left(\dfrac{5}{2};\dfrac{5}{2}\right)\)

11 tháng 1 2024

????????????????

a) \(AB=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}=2\)

 tính tương tự AC= \(\sqrt{34}\)   ,   BC=\(3\sqrt{2}\)

b) I là tâm đường tròn ngoại tiếp tam giác ABC => I là trọng tâm tam giác ABC => \(x_I=\dfrac{x_A+x_B+x_C}{3}\)  = 10/3

                     \(y_I=\dfrac{y_A+y_B+y_C}{3}\)   = 2

 =>  I ( 10/3 ; 2 )

3 tháng 1 2024

2\(x^2\) - 5 \(\sqrt{x^2-5x+7}\) = 10\(x\) - 17 Đk \(x^2\) - 5\(x\) + 7  ≥ 0

\(x^2\) - 2.\(\dfrac{5}{2}\)\(x\) + \(\dfrac{25}{4}\) + \(\dfrac{3}{4}\) = (\(x\) - \(\dfrac{5}{2}\))2 + \(\dfrac{3}{4}\) > 0 ∀ \(x\)

ta có: 2\(x^2\) - 5\(\sqrt{x^2-5x+7}\) = 10\(x\) - 17

2\(x^2\) - 5\(\sqrt{x^2-5x+7}\) - 10\(x\) + 17 = 0

(2\(x^2\) - 10\(x\) + 14)  -  5\(\sqrt{x^2-5x+7}\) + 3 = 0

2.(\(x^2\) - 5\(x\) + 7) - 5.\(\sqrt{x^2-5x+7}\) + 3 = 0

Đặt \(\sqrt{x^2-5x+7}\) = y > 0 ta có: 

2y2 - 5y + 3  = 0

2 + (-5) + 3 = 0

⇒ y1= 1; y2 =  \(\dfrac{3}{2}\) 

TH1 y = 1 ⇒ \(\sqrt{x^2-5x+7}\)  = 1

⇒ \(x^2\) - 5\(x\) + 7  = 1

    \(x^2\) - 5\(x\) + 6 = 0

     \(\Delta\) = 25 -  24 = 49

    \(x_1\) = \(\dfrac{-\left(-5\right)+\sqrt{1}}{2}\) =  3;

    \(x_2\) =  \(\dfrac{-\left(-5\right)-\sqrt{1}}{2}\)  = 2;

TH2  y = \(\dfrac{3}{2}\)

        \(\sqrt{x^2-5x+7}\) = \(\dfrac{3}{2}\)

         \(x^2\) - 5\(x\) + 7 = \(\dfrac{9}{4}\)

         4\(x^2\) - 20\(x\) + 28 = 9

          4\(x^2\) - 20\(x\) + 19 = 0

           \(\Delta'\) = 102 - 4.19

          \(\Delta'\) = 24

           \(x_1\) = \(\dfrac{-\left(-10\right)+\sqrt{24}}{4}\) = \(\dfrac{10+\sqrt{24}}{4}\)

           \(x_2\) = \(\dfrac{-\left(-10\right)-\sqrt{24}}{4}\) = \(\dfrac{10-\sqrt{24}}{4}\)

            8 - 5\(\sqrt{6}\)

Từ các lập luận trên kết luận phương trình có tập nghiệm là:

S = {8 - 5\(\sqrt{6}\); 2 ; 3; 8 + 5\(\sqrt{6}\)}

 

           

 

    

   

   

 

    

 

3 tháng 1 2024

2�2x2 - 5 �2−5�+7x25x+7 = 10x - 17 Đk �2x2 - 5x + 7  ≥ 0

�2x2 - 2.5225x + 254425 + 3443 = (x - 5225)2 + 3443 > 0 ∀ x

ta có: 2�2x2 - 5�2−5�+7x25x+7 = 10x - 17

2�2x2 - 5�2−5�+7x25x+7 - 10x + 17 = 0

(2�2x2 - 10x + 14)  -  5�2−5�+7x25x+7 + 3 = 0

2.(�2x2 - 5x + 7) - 5.�2−5�+7x25x+7 + 3 = 0

Đặt �2−5�+7x25x+7 = y > 0 ta có: 

2y2 - 5y + 3  = 0

2 + (-5) + 3 = 0

⇒ y1= 1; y2 =  3223 

TH1 y = 1 ⇒ �2−5�+7x25x+7  = 1

⇒ �2x2 - 5x + 7  = 1

    �2x2 - 5x + 6 = 0

     ΔΔ = 25 -  24 = 49

    �1x1 = −(−5)+122(5)+1 =  3;

    �2x2 =  −(−5)−122(5)1  = 2;

TH2  y = 3223

        �2−5�+7x25x+7 = 3223

         �2x2 - 5x + 7 = 9449

         4�2x2 - 20x + 28 = 9

          4�2x2 - 20x + 19 = 0

           Δ′Δ = 102 - 4.19

          Δ′Δ = 24

           �1x1 = −(−10)+2444(10)+24 = 10+244410+24

           �2x2 = −(−10)−2444(10)24 = 10−24441024

            8 - 566

Từ các lập luận trên kết luận phương trình có tập nghiệm là:

S = {8 - 566; 2 ; 3; 8 + 566}

Lan nói anh Long: "Khi em bằng tuổi anh hiện nay, thì anh đã 31 tuổi rồi." Long nói với Lan: "Khi anh bằng tuổi em hiện nay, thì em mới có 1 tuổi thôi." Hiện tại tuổi của Long và Lan là bao nhiêu tuổi? Mình làm như dưới đúng không Đáp án + lời giải chi tiết : Gọi số tuổi hiện tại của Lan là : x ( tuổi )    số tuổi hiện tại của anh Long là : y ( tuổi )     ( Điều kiện : y > x ) Khoảng...
Đọc tiếp
Lan nói anh Long: "Khi em bằng tuổi anh hiện nay, thì anh đã 31 tuổi rồi." Long nói với Lan: "Khi anh bằng tuổi em hiện nay, thì em mới có 1 tuổi thôi." Hiện tại tuổi của Long và Lan là bao nhiêu tuổi?

Mình làm như dưới đúng không

Đáp án + lời giải chi tiết :

Gọi số tuổi hiện tại của Lan là : x ( tuổi )   

số tuổi hiện tại của anh Long là : y ( tuổi )     ( Điều kiện : y > x )

Khoảng cách giữa tuổi của Lan và anh Long là : y - x 

Vì khi Lan bằng tuổi của anh Long thì anh Long đã 31 tuổi rồi, nên :

y + ( y - x ) = 31 ⇔ 2y - x = 31

 khi anh Long bằng tuổi của Lan thì Lan mới có 1 tuổi thôi, nên :

x - ( y - x ) = 1  ⇔ 2x - y = 1

Từ (1) và (2), ta có hệ :

[2yx=312xy=1[2�−�=312�−�=1 

⇒ x = 11 ; y = 21 ( Bấm máy )

Vậy số tuổi hiện tại của Lan là : 11 ( tuổi )

số tuổi hiện tại của anh Long là : 21 ( tuổi )

0