\(\left\{{}\begin{matrix}\dfrac{3}{x-1}-\dfrac{1}{y+2}=\dfrac{3}{4}\\\dfrac{5}{x-1}+\dfrac{3}{y+2}=\dfrac{29}{12}\end{matrix}\right.\)giải chi tiết giúp mình nha☘⚽✿❤ mình cảm ơn nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$\text{VT}(1^2+1^2+1^2)\geq (1+\frac{x}{y+z}+1+\frac{y}{x+z}+1+\frac{z}{x+y})^2$
$\Leftrightarrow 3\text{VT}\geq (3+\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y})^2$
$ = \left[3+\frac{x^2}{xy+xz}+\frac{y^2}{yz+yx}+\frac{z^2}{zy+zx}\right]^2$
$\geq \left[3+\frac{(x+y+z)^2}{2(xy+yz+xz)}\right]^2$
$\geq \left[3+\frac{3(xy+yz+xz)}{2(xy+yz+xz)}\right]^2=\frac{81}{4}$
$\Rightarrow \text{VT}\geq \frac{27}{4}$
Dấu "=" xảy ra khi $x=y=z>0$
Áp dụng BĐT Bunhiacopxky:
VT(12+12+12)≥(1+��+�+1+��+�+1+��+�)2VT(12+12+12)≥(1+y+zx+1+x+zy+1+x+yz)2
⇔3VT≥(3+��+�+��+�+��+�)2⇔3VT≥(3+y+zx+x+zy+x+yz)2
=[3+�2��+��+�2��+��+�2��+��]2=[3+xy+xzx2+yz+yxy2+zy+zxz2]2
≥[3+(�+�+�)22(��+��+��)]2≥[3+2(xy+yz+xz)(x+y+z)2]2
≥[3+3(��+��+��)2(��+��+��)]2=814≥[3+2(xy+yz+xz)3(xy+yz+xz)]2=481
⇒VT≥274⇒VT≥427
Dấu "=" xảy ra khi �=�=�>0x=y=z>0
\(=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}+\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\\ =\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
\(\dfrac{\sqrt[]{10}-\sqrt[]{2}}{\sqrt[]{5}-1}+\dfrac{2-\sqrt[]{2}}{\sqrt[]{2}-1}\)
\(=\dfrac{\sqrt[]{2}\left(\sqrt[]{5}-1\right)}{\sqrt[]{5}-1}+\dfrac{\sqrt[]{2}\left(\sqrt[]{2}-1\right)}{\sqrt[]{2}-1}\)
\(=\sqrt[]{2}+\sqrt[]{2}=2\sqrt[]{2}\)
Bạn xem kỹ lại đề có đúng không?