K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2020

\(\sqrt{x+2}+\sqrt{x-2}+2\sqrt{x^2-4}=2\left(3-x\right)\)(đkxđ: \(x\ge2\) )

\(\Leftrightarrow\sqrt{x+2}+\sqrt{x-2}+2\sqrt{\left(x-2\right)\left(x+2\right)}=-2\left(x-2\right)+2\)(1)

Đặt \(a=\sqrt{x+2};b=\sqrt{x-2}\)\(\left(a,b\ge0\right)\)

\(\Rightarrow\left(1\right)\Leftrightarrow a+b+2ab=-2b^2+2\)

\(\Leftrightarrow2b^2+b+a+2ab-2=0\)

\(\Leftrightarrow\left(a+b\right)\left(2b+1\right)-2=0\)(2)

Mặt khác ta có:

\(\left(1\right)\)\(\Leftrightarrow a\left(2b+1\right)=-2b^2-b+2\Leftrightarrow a=\frac{-2b^2-b+2}{2b+1}=-1+\frac{2}{2b+1}\)

Thay \(a=-1+\frac{2}{2b+1}\)vào (2) ta đươc:

\(\left(-1+\frac{2}{2b+1}+b\right)\left(2b+1\right)-2=0\)

\(\Leftrightarrow-2b-1+\frac{2\left(2b+1\right)}{2b+1}+2b^2+b-2=0\)

\(\Leftrightarrow2b^2-b-1=0\Leftrightarrow\left(b-1\right)\left(2b+1\right)=0\)mà \(b\ge0\Rightarrow2b+1>0\)

\(\Rightarrow b-1=0\Rightarrow b=1\)\(\Rightarrow a=-1+\frac{2}{2+1}=-\frac{1}{3}\)(Vô lí vì \(a\ge0\))

Vậy phương trình vô nghiệm

Hok tốt!!

\(\frac{-x^2}{4}=\frac{x}{2}-2\)

<=>\(-2=\frac{x}{2}+\frac{x^2}{4}\)

<=>\(-2=\frac{2x+x^2}{4}\)

<=>\(-8=2x+x^2\)

<=>\(-8=x\left(x+2\right)\)

Ta có bảng sau:

xx+2
-8-1 (không thỏa mãn)
-1-8 (không thỏa mãn)
81 (không thỏa mãn)
18 (không thỏa mãn)

Vậy \(x\in\varnothing\)

Quên,sửa lại:

Ta có bảng sau:

xx-2
-8-1 (không thỏa mãn)
-4-2 (thỏa mãn)
-2-4 (không thỏa mãn)
-1-8 (không thỏa mãn)
18 (không thỏa mãn)
24 (thỏa mãn)
42 (không thỏa mãn)
81 (không thỏa mãn)

Vậy \(x\in(2;-4)\)

5 tháng 3 2020

XAwng7g.png

(chụp lại đề trước khi giải để chắc chắn mình không spam:)) Ok, thế thì bất đẳng thức sai với \(a=b=c=4\)

25 tháng 4 2020

Xét biểu thức \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)

\(=\frac{\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(c+2\right)\left(a+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(abc+ab+bc+ca\right)+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{4+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)(Do \(ab+bc+ca+abc=4\)theo giả thiết)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}=1\)(***)

Với x,y dương ta có 2 bất đẳng thức phụ sau:

\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(*)

\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)(**)

Áp dụng (*) và (**), ta có:

\(\frac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\frac{1}{a+b+4}=\frac{1}{\left(a+2\right)+\left(b+2\right)}\)

\(\le\frac{1}{4}\left(\frac{1}{a+2}+\frac{1}{b+2}\right)\)(1)

Tương tự ta có: \(\frac{1}{\sqrt{2\left(b^2+c^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{b+2}+\frac{1}{c+2}\right)\)(2)

\(\frac{1}{\sqrt{2\left(c^2+a^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{c+2}+\frac{1}{a+2}\right)\)(3)

Cộng từng vế của các bất đẳng thức (1), (2), (3), ta được:

\(P\le\frac{1}{2}\left(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\right)=\frac{1}{2}\)(theo (***))

Đẳng thức xảy ra khi \(a=b=c\)

25 tháng 4 2020

Bạn bổ sung cho mình dòng cuối là a = b = c = 1 nhé!

5 tháng 3 2020

Giải lại (lần này giải 1 trường hợp thôi, kẻo lại bị troll ức chế:v)

PT (2) \(\Leftrightarrow\left(x+1-\sqrt{y+4}\right)\left(x+\sqrt{y+4}-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=\sqrt{y+4}\left(3\right)\\x+\sqrt{y+4}=3\left(4\right)\end{cases}}\)

*Xét (3): Thêm điều kiện \(x\ge-1\). (3) \(\Leftrightarrow y=x^2+2x-3\) (bình phương lên:v)

Thay vào PT (1) \(\Leftrightarrow\left(1-x\right)\left(x+2\right)\left(x^4+4x^3-x^2-12x+9\right)=0\)

Vì x + 2 > 0 và \(\left(x^4+4x^3-x^2-12x+9\right)\)

\(=\frac{\left(x+5\right)\left[4\left(x-1\right)^2\left(x+2\right)+1\right]+x^2\left(x+1\right)\left(x^2+2x-2\right)^2}{\left(x+1\right)\left(x^2+1\right)+4}>0\)

Do đó x = 1. Thay vào (3) suy ra y = 0.

(4) giải tương tự cũng cho nghiệm x = 1; y= 0

5 tháng 3 2020

bác này phải ngủ