cho \(A\left(x\right)=ax^3+bx^2+cx+d\)và -a+b-c+d=0
chứng minh A(x) chia hết cho x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\) \(\left(x\ne y\right)\)
\(=\frac{1}{x-y}-\frac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\frac{x-y}{x^2+xy+y^2}\)
\(=\frac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{2\left(x-y\right)}{x^2+xy+y^2}\)
Đặt x^2 + x + x = t
Ta có BT : \(t\left(t+1\right)-1^2=t^2+t-1\):)) đề lỗi j ko ?
\(-8+8y^2-6y^4+y^6\)
\(=y^6-6y^4+12y^2-8-4y^2\)
\(=y^6-3.2.\left(y^2\right)^2+3.y^2.2^2-2^3-4y^2\)
\(=\left(y^2-2\right)^3-\left(2y\right)^2\)
Sắp xếp lại ta được
y6 - 6y4 + 8y2 - 8
= ( y2 )3 - 3.( y2 )2.2 + 3.y2.22 - 23 - 4y2
= ( y2 - 2 )3 - 4y2
Bài làm :
\(x^3-3x^2+3x-1\)
\(=x^3-3.x^2.1+3.x.1^2-1^3\)
\(=\left(x-1\right)^3\)
Cho n thuộc N và n+1 là số chính phương. CMR : ( n+2 ).( n+3 ).( n+4 ) không phải là số chính phương
chia hết cho x+1 nha mn
Theo định lý Bézout thì số dư khi chia đa thức A(x) cho nhị thức x + 1 là: \(r=A\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d=-a+b-c+d=0\)
Vậy A(x) chia hết cho x + 1 (đpcm)