K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2020

Ta có:f(x)=(x-2)Q(x)+5  (1)

f(x)=(x-3)G(x)+7  (2)

Gọi dư trg phép chia f(x) cho (x-2)(x-3) là ax+b

Ta có:f(x)=(x-2)(x-3)(1-x2)+ax+b (3)

Vì (1) và (3) đúng với mọi xx=2 ta có:

f(2)=5

f(20=2a+b 

=>2a+b=5(*)

Vì (2) và (3) đúng với moin x nên với x=3 ta có:

f(3)=7

f(3)=3a+b

=>3a+b=7(**)

Lấy (**) và (*) ta đc b=1

Vậy f(x)=(x-2)(x-3)(1+x2)+2x+1

11 tháng 10 2020

a,Gọi Đa thức dư là ax+b,thương là Q(x)

Ta có:f(x)=1+x+x19+x199+x2019

              =(1-x2)Q(x)+Q(x)+b

=>1+x+x19+x199+x2019=(1-x)(1+x)Q(x)+ax+b  (1)

Vì (1) đúng với mọi x,thay x=1 và x=-1 ta đc:

1+1+119+1199+12019=a+b

<=>a+b=5(*)

Với x=1 ta có:

1+(-1)+(-1)99+(-1)199+(-1)2019=a(-1)+b

<=>-a+b=-3(**)

Cộng (*) và (**) vế theo vế ta đc:2b=2=>b=1

Thay b=1 vào (*) ta đc:a=4

Vậy đa thức dư là 4x+1

b,Ta có:(x+1)(x+3)(x+5)(x+7)+2019

=(x+1)(x+7)(x+5)(x+3)+2019

=(x2+8x+7)(x2+8x+15)+2019 

=(x2+8x+12-5)(x2+8x+12+3)+2019

=(x2+8x+12)2-2(x2+8x+12)-15+2019

=(x2+8x+12)2-2(x2+8x+12)+2004

11 tháng 10 2020

PTKA = 2H + 1S + 4O

          = 2.1 + 1.32 + 4.16

          = 2 + 32 + 64

          = 98

% khối lượng của 2H so với PTKA = \(\frac{2}{98}\cdot100=2,040...\approx2,04\%\)

% khối lượng của 1S so với PTKA = \(\frac{32}{98}\cdot100=32,653...\approx32,65\%\)

% khối lượng của 4O so với PTKA = \(\frac{64}{98}\cdot100=65,306...\approx65,31\%\)

11 tháng 10 2020

Ta có: \(P=\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}=\frac{1}{\frac{x}{\sqrt{yz}}+2}+\frac{1}{\frac{y}{\sqrt{zx}}+2}+\frac{1}{\frac{z}{\sqrt{xy}}+2}\)

Đặt \(\frac{x}{\sqrt{yz}}=c,\frac{y}{\sqrt{zx}}=t;\frac{z}{\sqrt{xy}}=k\left(c,t,k>0\right)\)thì ctk = 1

Ta cần tìm giá trị lớn nhất của \(P=\frac{1}{c+2}+\frac{1}{t+2}+\frac{1}{k+2}\)với ctk = 1

Dự đoán MaxP = 1 khi c = t = k = 1

Thật vậy: \(P=\frac{kt+2k+2t+4+ct+2c+2t+4+ck+2c+2k+4}{\left(c+2\right)\left(t+2\right)\left(k+2\right)}=\frac{\left(kt+tc+ck\right)+4\left(c+t+k\right)+12}{ctk+2\left(kt+tc+ck\right)+4\left(c+t+k\right)+8}\le\frac{\left(kt+tc+ck\right)+4\left(c+t+k\right)+12}{1+\left(kt+tc+ck\right)+3\sqrt[3]{\left(ctk\right)^2}+4\left(c+t+k\right)+8}=1\)Đẳng thức xảy ra khi x = y = z

11 tháng 10 2020

Ta có: \(\frac{\sqrt{yz}}{x+2\sqrt{yz}}=\frac{1}{2}\left(1-\frac{x}{x+2\sqrt{yz}}\right)\le\frac{1}{2}\left(1-\frac{x}{x+y+z}\right)=\frac{1}{2}\left(\frac{y+z}{x+y+z}\right)\)(bđt cosi) (1)

CMTT: \(\frac{\sqrt{xz}}{y+2\sqrt{xz}}\le\frac{1}{2}\left(\frac{x+z}{x+y+z}\right)\)(2)

\(\frac{\sqrt{xy}}{z+2\sqrt{xy}}\le\frac{1}{2}\left(\frac{x+y}{x+y+z}\right)\)(3)

Từ (1), (2) và (3) cộng vế theo vế ta có:

\(\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\le\frac{1}{2}\left(\frac{y+z}{x+y+z}\right)+\frac{1}{2}\left(\frac{x+z}{x+y+z}\right)+\frac{1}{2}\left(\frac{x+y}{x+y+z}\right)\)

=> P \(\le\frac{1}{2}\left(\frac{y+z+x+z+x+y}{x+y+z}\right)=\frac{1}{2}\cdot\frac{2\left(x+y+z\right)}{x+y+z}=1\)

Dấu "=" xảy ra <=> x = y = z

Vậy MaxP = 1 <=> x = y = z

11 tháng 10 2020

Áp dụng bất đẳng thức cô si

\(\frac{1}{a^3}+1+1\ge\frac{3}{a}\)

\(\frac{a^3}{b^3}+1+1\ge3\frac{a}{b}\)

\(b^3+1+1\ge3b\)

Do đó \(VT+6\ge VP+2\left(\frac{1}{a}+\frac{a}{b}+b\right)\ge VP+2.3=VP+6\Rightarrow VT\ge VP\left(đpcm\right)\)

11 tháng 10 2020

Áp dụng BĐT Cauchy cho 3 số ta được:

\(\frac{1}{a^3}+1+1\ge3\sqrt[3]{\frac{1}{a^3}\cdot1\cdot1}=\frac{3}{a}\)

\(\frac{a^3}{b^3}+1+1\ge3\sqrt[3]{\frac{a^3}{b^3}\cdot1\cdot1}=\frac{3a}{b}\)

\(b^3+1+1\ge3\sqrt[3]{b^3\cdot1\cdot1}=3b\)

Cộng vế 3 BĐT trên lại ta được:

\(\frac{1}{a^3}+\frac{a^3}{b^3}+b^3+6\ge3\left(\frac{1}{a}+\frac{a}{b}+b\right)\)

Mà \(3\left(\frac{1}{a}+\frac{a}{b}+b\right)=\left(\frac{1}{a}+\frac{a}{b}+b\right)+2\left(\frac{1}{a}+\frac{a}{b}+b\right)\)

\(\ge\frac{1}{a}+\frac{a}{b}+b+2\cdot3\sqrt[3]{\frac{1}{a}\cdot\frac{a}{b}\cdot b}=\frac{1}{a}+\frac{a}{b}+b+6\) (Cauchy)

\(\Rightarrow\frac{1}{a^3}+\frac{a^3}{b^3}+b^3+6\ge\frac{1}{a}+\frac{a}{b}+b+6\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{a^3}{b^3}+b^3\ge\frac{1}{a}+\frac{a}{b}+b\)

Dấu "=" xảy ra khi: \(\frac{1}{a}=\frac{a}{b}=b\Leftrightarrow\hept{\begin{cases}a^2=b\\b^2=a\end{cases}}\Rightarrow a=b=1\)

11 tháng 10 2020

Ta có: \(x-2x^2+3\)

\(=-\left(2x^2+2x\right)+\left(3x+3\right)\)

\(=-2x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(3-2x\right)\left(x+1\right)\)

11 tháng 10 2020

\(A=\frac{2}{3}x^2y^3\div\left(-\frac{1}{3}xy\right)+2x\left(y-1\right)\left(y+1\right)\)

\(=\left[\frac{2}{3}\div\left(-\frac{1}{3}\right)\right]\times\left(x^2\div x\right)\times\left(y^3\div y\right)+2x\left(y^2-1\right)\)

\(=-2xy^2+2xy^2-2x\)

\(=-2x\)( không phụ thuộc vào biến y )

=> đpcm

11 tháng 10 2020

1) \(A=2x^2+6x=2\left(x^2+3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(2\left(x+\frac{3}{2}\right)^2=0\Rightarrow x=-\frac{3}{2}\)

Vậy Min(A) = -9/4 khi x = -3/2

2) \(B=x^2-2x+y^2-4y+6\)

\(B=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(B=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy Min(B) = 1 khi x = 1 và y = 2

3) \(C=x^2-2xy+6y^2-12x+2y+45\)

\(C=\left(x^2-2xy+y^2\right)-12\left(x-y\right)+36+\left(5y^2-10y+5\right)+4\)

\(C=\left(x-y\right)^2-12\left(x-y\right)+36+5\left(y-1\right)^2+4\)

\(C=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-6\right)^2=0\\5\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=1\end{cases}}\)

Vậy Min(C) = 4 khi x = 7 và y = 1

4) \(D=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(D=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(D=\left(x^2+5x\right)^2-36\ge-36\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x^2+5x\right)^2=0\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy Min(D) = -36 khi x = 0 hoặc  x = -5