\(\sqrt{1-\sqrt{X^4-x^2}}=x-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
(m+1)x+2y=m-1 (m+1)x-2y=m-1 (1)
<=>
2mx-yx-y=m2+2m 2.m^2.x-2y=2m^2+4m (2)
(2)-(1) ta được
(2.m^2-m-1)x=2.m^2+3m+1
<=>x=(2.m^2+3m+1)/(2.m^2-m-1)
<=>x=1 + 4m+2/2.m^2-m-1
<=>x=1+ 2m+1/(m-1)(m+1/2) (3)
từ (3) ta đã thấy điều kiện của hệ số m đã cho khác 1
và điều kiện để hệ có nghiệm duy nhất là m khác 1 ; m khác -1/2
với các điều kiện đó từ (3) => x=1+ 2/m-1 (#)
thay (#) vào (1) ta được m+1+ 2(m+1)/m-1 -2y=m-1
=>y = 1+ (m+1)/m-1 =2 + 2/m-1 (##)
từ (#) và (##) ta => x; y là nghiệm nguyên duy nhất
m-1 thuộc Ư(2)=+-1;+-2
=>m=-1;0;2;3
HOK TỐT nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
x D F E K A O I B C O'
a) Ta có: AIBC nội tiếp ( O')
=> ^BAC = ^BIC (1)
ABDE nội tiếp ( O) có CA là tiếp tuyến
=> ^CAB = ^ADB ( cùng chắn cung AB ) (2)
Từ (1) ; (2) => ^ADB = ^BIC => ^KDB = ^CIB => B; I; K; D nội tiếp => ^KBD = ^KID
mà ^KBD = ^EBD = ^EAD = FAD
=> ^FAD = ^KID = ^FID
=> FAID nội tiếp
b) Kéo dài tia FD ------> tia Fx
FAID nội tiếp => ^DFI = ^DAI
I; A: C; B nội tiếp ( O') => ^IAB = ^ICB
=> ^DFI + ^ICB = ^DAI + ^IAB
Mà ^xDC = ^DFC + ^DCF = ^DFI + ^ICB
^DAB = ^DAI + ^IAB
=> ^xDC = ^DAB => ^xDB = ^DAB
=> Dx là tiếp tuyến ( O)
=> DF là tiếp tuyến ( O)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vi (O) giao (J) tai K,A suy ra OJ vuong goc voi AK
=> \(KI//OJ\Leftrightarrow AK\perp KI\)
mat khac (I) cat (J) tai M,N nen \(IJ\perp MN\)
ma \(OA\perp MN\) (xem nhu mot bo de)
suy ra\(AO//IJ\)
chung minh tu tu cung co \(AJ//OI\)
=> AJIO la hinh binh hanh
Goi AI giao OJ tai E
=> \(EA=EI=EK\)
=> \(\Delta AKI\) vuong tai K
tuc la \(AK\perp KI\) <=> dpcm
P/s : cai cho xem nhu mot bo de ban co the tu chung minh bang cach ve them hinh phu ma cu the la ve them tiep tuyen tai A
mik trinh bay hoi tat co gi mong bn thong cam
![](https://rs.olm.vn/images/avt/0.png?1311)
1)
c) Ta có : CK // AB ( \(\perp\)BD )
Xét \(\Delta ABD\)theo định lí Ta-let,ta có :
\(\frac{IK}{AB}=\frac{KD}{BD}\Rightarrow IK.BD=AB.KD\)( 1 )
Xét \(\Delta ABO\)và \(\Delta CKD\)có
\(\widehat{ABO}=\widehat{CKD}=90^o\); \(\widehat{AOB}=\widehat{CDK}\)( cùng bù \(\widehat{CBD}\))
\(\Rightarrow\Delta ABO\approx\Delta CKD\left(g.g\right)\)
\(\Rightarrow\frac{KD}{BO}=\frac{CK}{AB}\Rightarrow CK.BO=KD.AB\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(CK.BO=IK.BD=IK.2BO\)
\(\Rightarrow CK=2IK\)\(\Rightarrow\)I là trung điểm của CK
2)
c) dễ thấy AM = AN \(\Rightarrow\Delta AMN\)cân tại A \(\Rightarrow\widehat{AMN}=\widehat{ANM}\)( 1 )
vì H là trung điểm dây BC nên \(OH\perp BC\)hay \(\widehat{AHO}=90^o\)
Từ đó dễ dàng suy ra 5 điểm A,M,O,H,N cùng thuộc 1 đường tròn
\(\Rightarrow\)Từ giác AMHN nội tiếp \(\Rightarrow\widehat{AHN}=\widehat{AMN};\widehat{AHM}=\widehat{ANM}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(\widehat{AHN}=\widehat{AHM}\)\(\Rightarrow\)HA là tia phân giác \(\widehat{MHN}\)
d) BE // AM \(\Rightarrow\widehat{EBH}=\widehat{MAB}\)
\(\widehat{MAH}=\widehat{MNH}\)( do tứ giác AMHN nội tiếp )
\(\Rightarrow\widehat{EBH}=\widehat{MNH}\)\(\Rightarrow\)Tứ giác EBNH nội tiếp
\(\Rightarrow\widehat{EHB}=\widehat{ENB}\)
Mặt khác : \(\widehat{ENB}=\widehat{MCB}\left(=\frac{1}{2}sđ\widebat{MB}\right)\)
Suy ra \(\widehat{EHB}=\widehat{MCB}\Rightarrow HE//MC\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT Cô si cho vế trái ta có
\(\left(ab+2bc\right)\left(2ab+bc\right)\le\frac{\left(3\left(ab+bc\right)\right)^2}{4}\)
=> ĐPCM dấu = khi a = b
_Kudo_
![](https://rs.olm.vn/images/avt/0.png?1311)
Cộng vế hai biểu thức ta đc \(7x=21\)=> x =3
thay vào ta tìm đc y=5
_Kudo_
ĐKXĐ: \(x\ge1\)
\(\sqrt{1-\sqrt{x^4-x^2}}=x-1\)
Bình phương hai vế:
\(1-\sqrt{x^4-x^2}=x^2-2x+1\)
\(\Leftrightarrow-\sqrt{x^4-x^2}=x^2-2x\)
Lại bình phương hai vế:
\(x^4-x^2=x^4-4x^3+4x^2\)
\(\Leftrightarrow5x^2-4x^3=0\Leftrightarrow x^2\left(5-4x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\5-4x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(L\right)\\x=\frac{5}{4}\end{cases}}\)
Vậy nghiệm duy nhất là \(\frac{5}{4}\)