Hai tiếp tuyến của đường tròn O tại A và B cách nhau tại P. Biết góc APB = 55 độ
a) số đo mỗi cung AB
b) gọi M là bán kính của đường tròn tâm O sao cho OM song song với PB, Mthuộc cung lớn AB. Tính số đo cung AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách khácP:
Áp dụng bđt Bunhiacopski cho 2 bộ số \(\left(\sqrt{x-2};1\right)\)và \(\left(\sqrt{4-x};1\right)\)
\(\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\le\left(1+1\right)\left(x-2+4-x\right)\)
\(\Rightarrow\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\le4\)
\(\Rightarrow\sqrt{x-2}+\sqrt{4-x}\le2\)
Xét \(VP=x^2-6x+11=\left(x-3\right)^2+2\ge2\)
Từ đó suy ra VT = VP khi \(\hept{\begin{cases}\sqrt{x-2}+\sqrt{4-x}=2\\\left(x-3\right)^2+2=2\end{cases}}\Leftrightarrow x=3\)
Vậy nghiệm duy nhất của phương trình là 3
ĐK: \(2\le x\le4\)
Đặt: \(t=\sqrt{x-2}+\sqrt{4-x}\ge0\)
<=> \(t^2=x-2+4-x+2\sqrt{-x^2+6x-8}\)
<=> \(t^2-2=2\sqrt{-x^2+6x-8}\)
=> \(-x^2+6x-8=\frac{t^4-4t^2+4}{4}\)
<=> \(x^2-6x+11=-\frac{t^4-4t^2+4}{4}+3\)
Khi đó ta có pt: \(t=-\frac{t^4-4t^2+4}{4}+3\)
<=> \(t^4-4t^2+4t-8=0\)
<=> \(t^2\left(t-2\right)\left(t+2\right)+4\left(t-2\right)=0\)
<=> \(\left(t-2\right)\left(t^3+2t^2+4\right)=0\)( với t >= 0 ta có t^3 + 2t^2 + 4 > 0)
<=> t - 2 = 0 <=> t = 2
Với t = 2 ta thay vào có nghiệm x = 2 ( tmđk)
Thử lại với bài toán ban đầu ta có x = 2 là nghiệm
igfkdynjjiklfkjjvilhtfffgugdhrcjfifyijjcdjcjcjctrutcvrucycrjkbnkvcjlnnjklnhcnvjvkjbnkjffjnk;khknl;kcjc.n/b
Gọi n ( Cu) = x ( mol); n ( Mg ) = y ( mol)
Ta có hệ : \(\hept{\begin{cases}m\left(Cu\right)+m\left(Mg\right)=8,8\\m\left(CuCl_2\right)+m\left(MgCl_2\right)=23\end{cases}}\)
<=> \(\hept{\begin{cases}64x+24y=8,8\\\left(64+35,5.2\right)x+\left(24+35,5.2\right)y=23\end{cases}}\)
<=> \(x=y=0,1\)( mol)
=> m ( Cu ) = 0,1 . 64 = 6,4 ( g )
m ( Mg) = 2,4 ( g)
hóa vẫn được à cô . mà cô quên viết phương trình hóa học :))
\(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2+3\right)\)
= 4(m + 1)2 - 4m2 - 12
= 4m2 + 8m + 4 - 4m2 - 12 = 8m - 8
Để pt có 2 nghiệm thì \(\Delta\ge0\) <=> 8m - 8 \(\ge\)0
<=> 8(m - 1) \(\ge\) 0
<=> m -1 \(\ge\)0
<=> m \(\ge\) 1
Theo vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)=2m+2\\x_1.x_2=m^2+3\end{cases}}\)
Theo đề ta có: \(\frac{x1}{x2}+\frac{x2}{x1}=\frac{8}{x1.x2}\)
ĐK: x1, x2 \(\ne\)0 => \(\hept{\begin{cases}x1+x2\ne0\\x1.x2\ne0\end{cases}}hay\hept{\begin{cases}2m+2\ne0\\m^2+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\ne-1\\m^2\ne-3\end{cases}}\Leftrightarrow m\ne-1\)
<=> \(\frac{\left(x_1\right)^2+\left(x_2\right)^2}{x1.x2}=\frac{8}{x1.x2}\)
=> \(\left(x_1\right)^2+\left(x_2\right)^2=8\)
<=> \(\left(x_1+x_2\right)^2-2.x_1.x_2=8\)
Hay (2m + 2)2 - 2(m2 + 3) = 8
<=> 4m2 + 8m + 4 - 2m2 - 6 = 8
<=> 2m2 + 8m - 10 = 0
a + b + c = 2 + 8 + (-10) = 0
=> m = 1 (tmđk) và m = \(\frac{c}{a}=-5\)(ktmđk)
Vậy m = 1 thì ....
Để phương trình có 2 nghiệm thì \(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m^2+3\right)\ge0\)
\(\Leftrightarrow\Delta'=2m-2\ge0\Leftrightarrow m\ge1\)
anh Tùng ơi, m = 1 thì pt chỉ có 1 nghiệm là 2 thôi ạ
Kết luận là delta >0 <=> m > 1
\(8x^2-8x+m^2+1=0\) ( 1 )
\(\Delta'=16-8\left(m^2+1\right)=16-8m^2-8=8-8m^2\)
PT ( 1 ) có hai nghiệm x1,x2 \(\Leftrightarrow\Delta'=8-8m^2\ge0\)\(\Leftrightarrow m^2\le1\Leftrightarrow-1\le m\le1\)
Áp dụng hệ thức Vi-ét, ta có :
\(\hept{\begin{cases}x_1+x_2=1\\x_1x_2=\frac{m^2+1}{8}\end{cases}}\)
Do đó : \(x_1^4-x_2^4=x_1^3-x_2^3\)
\(\Leftrightarrow x_1^4-x_1^3=x_2^4-x_2^3\)
\(\Leftrightarrow x_1^3\left(x_1-1\right)-x_2^3\left(x_2-1\right)=0\Leftrightarrow-x_1^3x_2+x_2^3x_1=0\)
\(\Leftrightarrow x_1x_2\left(x_1^2-x_2^2\right)=0\Leftrightarrow x_1x_2\left(x_1-x_2\right)\left(x_1+x_2\right)=0\)
Dễ thấy \(x_1x_2=\frac{m^2+1}{8}>0;x_1+x_2=1>0\)nên \(x_1-x_2=0\Leftrightarrow x_1=x_2\)
Từ đó tìm được \(m=\pm1\)
Không mất tính tổng quát giả sử \(a\ge b\ge c\). Khi đó, ta dễ dàng có được \(a^n\ge b^n\ge c^n\)và \(\frac{1}{b+c}\ge\frac{1}{c+a}\ge\frac{1}{a+b}\)
Áp dụng bất đẳng thức Chebyshev, ta có: \(\frac{a^n}{b+c}+\frac{b^n}{c+a}+\frac{c^n}{a+b}\ge\frac{1}{3}\left(a^n+b^n+c^n\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
P/s: Đây là một bước nhỏ trong một cách chứng minh dạng tổng quát của bđt Nesbit
Phương trình có nghiệm x = 1/2
=> \(8\left(\frac{1}{2}\right)^2-8\cdot\frac{1}{2}+m^2+1=0\)
=> \(8\cdot\frac{1}{4}-8\cdot\frac{1}{2}+m^2+1=0\)
=> 2 - 4 + m2 + 1 = 0 \(\Leftrightarrow\)m2-1=0 \(\Leftrightarrow\)m2 = 1 \(\Leftrightarrow\)m= \(\pm1\)
Vậy với m = \(\pm1\)thì x có nghiệm duy nhất là x = \(\frac{1}{2}\)
a) tứ giác APBQ có góc OAP=90độ, OBP=90 độ ( zì PA , PB tiếp tuyến )
góc APB =55 độ
góc AOB =360 độ -90-90-55=125
=> cung nhỏ AB là 125 độ
cung lớn AB là
360-125=235 độ