Cho Parobol (P) :y=\(x^2\) và đường thẳng d: \(y=-mx+1\)
a, Vẽ (P) và (d) trên cùng mặt phẳng khi m=2
b, Cmr với mọi giá trị của m thì đường thẳng (d) luôn cắt Parabol (P) tại hai điểm phân biệt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh theo thứ tự sau đây
chứng minh tứ giác ABMH nội tiếp đường tròn
chứng minh DC⋅AB=CA⋅CM
Nếu MC = HD và MD = 5cm thì độ dài đoạn MC bằng bao nhiêu?
chứng minh AD vuông góc với BM
\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
Xét từng TH với x-y=1 và x-y=-1
\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)
Xét từng TH x=1 và y=-2
1:
a)\(\hept{\begin{cases}nx+x=5
\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
ta có biến đổi góc như sau
\(\widehat{BIK}=\frac{1}{2}\widehat{A}+\frac{1}{2}\widehat{B}=\widehat{KAC}+\widehat{IBC}=\widehat{KBC}+\widehat{IBC}=\widehat{IBK}\)
=> tam giác BKI cân tại K nên KB =KI = KC
Hay K là tâm đường tròn ngoại tiếp tam giác IBC
a) Do E , F là các tiếp điểm của (I) zới AC , AB nên \(\widehat{EFD\:=}\widehat{CED},\widehat{FED}=\widehat{BFD},EF//PQ\)
=>\(\widehat{EFD}=\widehat{AQF},\widehat{FED}=\widehat{APE}.\) mặt khác \(\widehat{PEA}=\widehat{CED},\widehat{AQF}=\widehat{BFD}\)suy ra tam giác FQA\(_{\simeq}\)tam giác PEA (g.g)
=>\(\frac{QA}{EA}=\frac{AF}{AP}=>AP.AQ=AE.FA=AE^2\)
hay \(\frac{BK\left(AB+AC\right)}{BC}\ge2BK\Leftrightarrow\frac{AB+AC}{BC}\ge2\)khi tam giác ABC đều thì \(\frac{AB+AC}{BC}=2\). Zậy GTNN của\(\frac{AB+AC}{BC}=2\)
b)ÁP dụng dịnh lý Ptolemy cho tứ giác ABKC
ta có \(AK.BC=AB.Ck=Bk\left(AB+AC\right)\)
tam giác AOD cân \(\widehat{AOI}\le90^0\Leftrightarrow IA\ge IK\Leftrightarrow IA+IK\ge2IK\Leftrightarrow AK\ge2IK\)suy ra\(\frac{BK\left(AB+AC\right)}{BC}\ge2IK\)
thầy cô tích cho em di ạ . em cố gắng để giải bài này r
CM được S,T,E thẳng hàng
Xét tam giác ECT zà tam giác EST có \(\widehat{CET}\left(chung\right),\widehat{ECT}=\widehat{ESC}\)
=>tam giác ECT=tam giác EST(g.g)
=>\(\frac{EC}{ES}=\frac{ET}{EC}=>ET.ES=EC^2\)
xét tam giác EMT zà tam giác ESN có \(\widehat{MET}\left(chung\right),\widehat{EMT}=\widehat{ESN}\)
=> tam giác ECT = tam giác ESN(g.g)
=>\(\frac{EM}{ES}=\frac{ET}{EN}=>ET.ES=EM.EN=EM.EN\\\)
Nên \(EC^2=EM.EN=\left(=ET.ES\right)=\frac{EC}{EN}=\frac{EM}{EC}\)
tam giác ECM = tam giasc ENC (c.g.c)
=>\(\widehat{EMC}=\widehat{ENC}\)
=>\(\widehat{ECD}+\widehat{DCM}=\widehat{NAC}+\widehat{NCA}\)
mà \(\widehat{ECD=\widehat{NAC}}\)
nên \(\widehat{DCM}=\widehat{NCA}\)
ta có \(KL//AB=>\widebat{BK}=\widebat{AL}=>\widehat{DCM}=\widehat{LCA}\)
ta có\(\widehat{NCA}=\widehat{LCA}\left(=\widehat{DCM}\right)\)
=> hai tia CN , CL trùng nhau .zậy C,N,L thẳng hàng
từ từ hồi trả lời cho câu này củng hơi khó cần thời gian suy nghĩ
???????????????????????????????????????????????????????????
a, thay m = 2 vào đthg d \(\Rightarrow\)y = -2x+1
( Vẽ đthg d )
Cho x = \(\pm1\), \(\pm2\) \(\rightarrow\)y = 1 ; 4
( Vẽ Parabol P ).
b, Xét phương trình hoành độ giao điểm :
x2 = -mx+1 \(\rightarrow\) x2 + mx -1 = 0
\(\Delta\)= m2 - 4.1.(-1) =m2 + 4
\(\rightarrow\)\(\Delta\)\(\ge\)0 \(\forall x\inℝ\)(đpcm)