Tìm tọa độ giao điểm của Parabol (P): y=\(\frac{1}{4}x^2\) và đường thẳng (d):y=\(\frac{1}{2}x-2\) bằng đôf thị và bằng phép toán
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Gọi I là trung điểm của CD
Xét hình thang ACDB (AC//BD) có:\(\hept{\begin{cases}CI=ID\\AO=BO\end{cases}}\)
=>OI là đường tung bình của hình thang ACDB
=>\(OI=\frac{AC+BD}{2}=\frac{CD}{2}=CI=DI\)
=>Tam giác COD vuông tại O
=> đpcm
b)Kẻ OE vuông góc với CD,giao cuae CO và BD là F
Ta có tam giác ACO=Tam giác BFO( cạnh góc vuông-góc nhọn kề)
=>OC=OF
Xét tam giác CDF có:
CO=OF (cmt)
DO vuông góc với CF
=>tam giác CDF cân tại D
=>DO là phân giác góc CDF
=>góc EDO=BDO
=>tam giác EOD=tam giác BOD(Cạnh huyền - góc nhọn)
=>OE=OB
=>EO là bán kính (O) mà OE vuông góc với BC(cách vẽ)
=>CD là tiếp tuyến đường tròn đường kính AB
![](https://rs.olm.vn/images/avt/0.png?1311)
\(ĐKXĐ:\hept{\begin{cases}a\ge0\\a\ne\frac{1}{9}\end{cases}}\)
\(P=\left(\frac{\sqrt{a}-1}{3\sqrt{a}-1}-\frac{1}{1+3\sqrt{a}}+\frac{8\sqrt{a}}{9a-1}\right)\div\left(1-\frac{3\sqrt{a}-2}{3\sqrt{a}+1}\right)\)
\(\Leftrightarrow P=\frac{\left(\sqrt{a}-1\right)\left(1+3\sqrt{a}\right)-3\sqrt{a}+1+8\sqrt{a}}{9a-1}:\frac{3\sqrt{a}+1-3\sqrt{a}+2}{3\sqrt{a}+1}\)
\(\Leftrightarrow P=\frac{\sqrt{a}+3a-1-3\sqrt{a}-3\sqrt{a}+1+8\sqrt{a}}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}:\frac{3}{3\sqrt{a}+1}\)
\(\Leftrightarrow P=\frac{\left(3a+3\sqrt{a}\right)\left(3\sqrt{a}+1\right)}{3\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}\)
\(\Leftrightarrow P=\frac{a+\sqrt{a}}{3\sqrt{a}-1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mk không biết tải hình lên, xin lỗi bn nhé.
a) Do AB là đường kính của (O) nên
\(\Rightarrow\widehat{ACB}=\widehat{ADB}=90^0\)
Xét tứ giác CEDF có : \(\widehat{ECF}+\widehat{EDF}=180^0\)
\(\Rightarrow ECDF\)là tứ giác nội tiếp (ĐPCM)
b) Do \(\widehat{ECF}=\widehat{EDF}=90^0\)nên ECDF nội tiếp đường tròn đường kính EF
Hay ECDF nội tiếp (I;IE) nên
\(\widehat{IDF}=\widehat{IFD}=\widehat{ECD}=\frac{1}{2}sđ\widebat{BD}=\widehat{OAD}=\widehat{ODA}\)
Từ đó ta có: \(\widehat{IDO}=\widehat{IDE}+\widehat{OAD}=\widehat{IDE}+\widehat{IDF}=90^0\)
\(\Rightarrow\)ID là tiếp tuyến của đường tròn (O) (ĐPCM)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có
\(A=\frac{x^2+2x-1}{x^2-2x+3}\left(ĐKXĐ:\forall x\inℝ\right)\)
\(\Leftrightarrow A.\left(x^2-2x+3\right)=x^2+2x-1\)
\(\Leftrightarrow\left(A-1\right).x^2-2\left(A+1\right)x+3A+1=0\left(1\right)\)
Do \(\forall x\inℝ\)ta luôn có một giá trị A tương ứng nên phương trình (1) luôn có nghiệm
\(\Rightarrow\Delta^'_x\ge0\)
\(\Leftrightarrow\left(A+1\right)^2-\left(3A+1\right)\left(A-1\right)\ge0\)
\(\Leftrightarrow-2A^2+4A+2\ge0\)
\(\Leftrightarrow1-\sqrt{2}\le A\le1+\sqrt{2}\)
Nếu \(A=1-\sqrt{2}\)thì thay vào trên ta được \(x=1-\sqrt{2}\)
Nếu \(A=1+\sqrt{2}\)thì thay vào trên ta được
Vậy \(\hept{\begin{cases}MinA=1-\sqrt{2}\Leftrightarrow x=1-\sqrt{2}\\MaxA=1+\sqrt{2}\Leftrightarrow x=1+\sqrt{2}\end{cases}}\)
vt pt hoành độ giao điểm rùi giải pt bậc hai thôi bạn