K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2020

a) Đặt t = x2

bthuc <=> t2 - 7t + 16 

Từ đây ta không thể phân tích được :)

b) x3 - 2x2 + 5x - 4 

= x3 - x2 - x2 + x + 4x - 4

= x2( x - 1 ) - x( x - 1 ) + 4( x - 1 )

= ( x - 1 )( x2 - x + 4 )

c) x3 - 2x2 + x - 3 ( phân tích hổng ra :)) )

d) 3x3 - 4x2 + 12x - 4 ( phân tích hổng ra p2 :)) )

e) 6x3 + x2 + x + 1

= 6x3 + 3x2 - 2x2 - x + 2x + 1

= 3x2( 2x + 1 ) - x( 2x - 1 ) + ( 2x + 1 )

= ( 2x + 1 )( 3x2 - x + 1 )

f) 4x3 + 6x2 + 4x + 1

= 4x3 + 2x2 + 4x2 + 2x + 2x + 1

= 2x2( 2x + 1 ) + 2x( 2x + 1 ) + ( 2x + 1 )

= ( 2x + 1 )( 2x2 + 2x + 1 )

19 tháng 10 2020

:) Quỳnh đặt ĐK đi nè :3 \(x^2=t\left(t\ge0\right)\)

19 tháng 10 2020

Đặt A = -x2 + 2xy - 4y2 + 2x + 10y - 8

= -[(x2 - 2xy + y2) - 2(x - y) + 1] - (3y2 - 12y + 12) + 5

= -[(x - y - 1)2 + 3(y - 2)2] + 5\(\le\)5

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)

Vậy Max A = 5 <=> x = 3 ; y = 2

19 tháng 10 2020

-x2 + 2xy - 4y2 + 2x + 10y - 8 

= -( x2 - 2xy + y2 - 2x + 2y + 1 ) - ( 3y2 - 12y + 12 ) + 5

= -[ ( x2 - 2xy + y2 ) - ( 2x - 2y ) + 1 ] - 3( y2 - 4y + 4 ) + 5

= -[ ( x - y )2 - 2( x - y ) + 12 ] - 3( y - 2 )2 + 5

= -( x - y - 1 )2 - 3( y - 2 )2 + 5

Ta có : \(\hept{\begin{cases}-\left(x-y-1\right)^2\\-3\left(y-2\right)^2\end{cases}}\le0\forall x,y\Rightarrow-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\forall x,y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)

Vậy GTLN của biểu thức = 5 <=> x = 3 ; y = 2

19 tháng 10 2020

Thay x = 101; y = 100; z = 98 vào biểu thức P, ta có:

P = 101. 100 + 100. 98 + 98. 101 - 100 - 98 - 2

   = 10100 + 9800 + 9898 - 100 - 100

   = 29798 - 200

   = 29598

Vậy với x = 101; y = 100; z = 98 thì biểu thức P = 29598

19 tháng 10 2020

a) \(x^2 +x +1 = x^2 +x +1/4 +3/4 = (x+1/2)^2 +3/4\)

các câu khác dùng phương pháp tương tự

19 tháng 10 2020

a) x^2 + x +1 = x^2 + x + 1/4 + 3/4 = ( x+ 1/2)^2 + 3/4

Vì (x+1/2)^2 >= 0 => (x+1/2)^2 + 3/4>=3/4 > 0

b) 4x^2 - 2x + 1 = (2x)^2 - 2x + 1/4 + 3/4 = (2x +1/2)^2 + 3/4

Vì (2x +1/2)^2 >=0 => (2x +1/2)^2 + 3/4 >= 3/4 > 0

c) x^4 -3x^2 + 9 = x^4 - 3x^2 + 9/4 + 25/4 = ( x^2+ 3/2)^2 + 9/4

Vì ( x^2+ 3/2)^2 >= 0 => ( x^2+ 3/2)^2 + 9/4 >=9/4 >0

d) x^2 + y^2 -2x-2y + 2xy +1

= ( x^2 + 2xy + y^2) - 2( x+y) +1

= ( x+y)^2 -2(x+y) +1

= (x +y +1)^2 >=0

g) x^2+y^2+2(x-2y)+6

= (x^2 + 2x +1) + (y^2 -4y+4) +1

= ( x+1)^2 + (y-2)^2 +1

Vì (x+1)^2; (y-2)^2 >= 0 =>  ( x+1)^2 + (y-2)^2 +1>=1>0

19 tháng 10 2020

290000

học tốt

19 tháng 10 2020

A = 99^2 + 54.52 + 54.78-1

19 tháng 10 2020

a) x2 - 4x + 2 = (x2 - 4x + 4) - 2 = (x - 2)2 - 2 = \(\left(x-2+\sqrt{2}\right)\left(x-2-\sqrt{2}\right)\)

b)  x2 - 12x + 11 = x2 - x - 11x + 11 = x(x - 1) - 11(x - 1) = (x - 1)(x - 11)

c) 3x2 + 6x - 9 = 3x2 - 3x + 9x - 9 = 3x(x - 1) + 9(x - 1) = (3x + 9)(x - 1) = 3(x + 3)(x - 1)

d) 2x2 - 6x + 2 = 2(x2 - 3x + 1) = 2(x2 - 3x + 9/4 - 5/4) = 2[(x - 3/2)2 - 5/4] = \(2\left(x-\frac{3}{2}+\sqrt{\frac{5}{4}}\right)\left(x-\frac{3}{2}-\sqrt{\frac{5}{4}}\right)\) 

19 tháng 10 2020

1. 

a) \(x^2-4x+2=\left(x^2-4x+4\right)-2=\left(x-2\right)^2-2=\left(x-2-\sqrt{2}\right)\left(x-2+\sqrt{2}\right)\)

b) \(x^2-12x+11=\left(x^2-12x+36\right)-25=\left(x-6\right)^2-5^2=\left(x-6-5\right)\left(x-6+5\right)=\left(x-11\right)\left(x-1\right)\)

c) \(3x^2+6x-9=3\left(x^2+2x-3\right)=3\left[\left(x^2+2x+1\right)-4\right]=3\left[\left(x+1\right)^2-2^2\right]=3\left(x-1\right)\left(x+3\right)\)

d) \(2x^2-6x+2=2\left(x^2-3x+1\right)=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{5}{4}\right)=2\left[\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\right]\)

\(=2\left(x-\frac{3}{2}-\frac{\sqrt{5}}{2}\right)\left(x-\frac{3}{2}+\frac{\sqrt{5}}{2}\right)\)

19 tháng 10 2020

Ta có a + b = 5 ;

=> (a + b)2 = 25

=> a2 + 2ab + b2 = 25

=> a2 + b2 = 19

Lại có (a - b)2 = a2 - 2ab + b2 = 19 - 6 = 13

=> (a - b)2 = 13

=> a - b = \(\pm\sqrt{13}\)

19 tháng 10 2020

\(a+b=5\)

=> \(\left(a+b\right)^2=25\)

=> \(a^2+2ab+b^2=25\)

=> \(a^2+b^2+6=25\)

=> \(a^2+b^2=19\)

Ta có : \(\left(a-b\right)^2=a^2-2ab+b^2=19-6=13\)

=> \(a-b=\pm\sqrt{13}\)

19 tháng 10 2020

\(\sqrt{x} = \sqrt{2012} - \sqrt{y} \Rightarrow x = 2012 -2\sqrt{y} +y \\ \Rightarrow \)  

y là số chính phương. Ta thử y =0,1,4,.... rồi tìm x

19 tháng 10 2020

Bạn kiểm tra lại đề nhé.

G/s: x = y \(\ne\)0 => a = b 

=> \(2a^2.2x^2=4a^2\) ???

18 tháng 10 2020

Mấy câu dễ mình làm trước nhé. Mấy câu khó hơn mình trình bày sau :)

1) 2x2 - 5xy - 3y2 = 2x2 + xy - 6xy - 3y2 = x( 2x + y ) - 3y( 2x + y ) = ( 2x + y )( x - 3y )

2) 7x2 + 3xy - 10y2 = 7x2 - 7xy + 10xy - 10y2 = 7x( x - y ) + 10y( x - y ) = ( x - y )( 7x + 10y )

3) x2 + 5x - 2 = ( x2 + 5x + 25/4 ) - 33/4 = ( x + 5/2 )2 - \(\left(\frac{\sqrt{33}}{2}\right)^2\)\(\left(x+\frac{5}{2}-\frac{\sqrt{33}}{2}\right)\left(x+\frac{5}{2}+\frac{\sqrt{33}}{2}\right)\)

6) x4 + 324 = ( x4 + 36x2 + 324 ) - 36x2 = ( x2 + 18 )2 - ( 6x )2 = ( x2 - 6x + 18 )( x2 + 6x + 18 )

18 tháng 10 2020

4) x8 + x7 + 1

= x8 + x7 + x6 - x6 + 1

= x6( x2 + x + 1 ) - ( x6 - 1 )

= x6( x2 + x + 1 ) - ( x3 - 1 )( x3 + 1 )

= x6( x2 + x + 1 ) - ( x - 1 )( x2 + x + 1 )( x3 + 1 )

= ( x2 + x + 1 )( x6 - ( x - 1 )( x3 + 1 ) ]

= ( x2 + x + 1 )( x6 - x4 + x3 - x + 1 )

5) x7 + x5 + 1

= x7 + x6 - x6 + x5 + 1

= x5( x2 + x + 1 ) - ( x6 - 1 )

= x5( x2 + x + 1 ) - ( x3 - 1 )( x3 + 1 )

= x5( x2 + x + 1 ) - ( x - 1 )( x2 + x + 1 )( x3 + 1 )

= ( x2 + x + 1 )[ x5 - ( x - 1 )( x3 + 1 ) ]

= ( x2 + x + 1 )( x5 - x4 + x3 - x + 1 )

7) x5 - 5x3 + 4x

= x5 - x3 - 4x3 + 4x

= x3( x2 - 1 ) - 4x( x2 - 1 )

= ( x2 - 1 )( x3 - 4x )

= ( x - 1 )( x + 1 )x( x2 - 4 )

= x( x - 1 )( x + 1 )( x - 2 )( x + 2 )

8) Xin hàng :)