E=a+a3+a5+...+a2n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = 1+3+32+33+...+399+3100
=> 3A=3+32+33+34+...+3100+3101
=> 3A-A=(3+32+33+...+3100+3101)-(1+3+32+33+...+399+3100)
=> 2A=3101-1
=> A = \(\dfrac{3^{101}}{2}\)
b) B=2100-299+298-297+...-23+22-2+1
=> 2B=2101-2100+299-298+...-24+23-22+2
=>2B+B=(2101-2100+299-298+...-24+23-22+2)+(2100-299+298-297+...-23+22-2+1)
=> 3B = 2101+1
=> B = \(\dfrac{2^{101}+1}{3}\)
Ta có :
D = a2+a4+...+a100
=> a2.D=a4+a6+...+a102
=> a2.D-D=(a4+a6+...+a102)-(a2+a4+...+a100)
=> (a2-1).D=a101-a2
=> D= \(\dfrac{a^{101}-a^2}{a^2-1}\)
64 x 16 + 81 x 84 + 17 x 16
= ( 64 + 17 ) x 16 + 81 x 84
= 81 x 16 +6804
= 1296 + 6804
=8100
`3n.3=243`
`9n=243`
`n=243:9=27`
_______________________________________________
`2n.2^4=128`
`2^{5} n=2^7`
`n=2^7:2^5=2^2`
`n=4`
_______________________________________________
`5.4n+13=1293`
`20n=1293-13`
`20n=1280`
`n=64`
_______________________________________________
`2.3n=162`
`6n=162`
`n=162:6=27`
_______________________________________________
`3n+3n+2=810`
`(3+3)n=810-2`
`6n=808`
`n=808:6=404/3`
\(a,3n.3=243\\ =>9n=243\\ =>n=27\left(thoamanđk\right)\\ b,2n.2^4=128\\=>2n.16=128 \\ =>2n=8\\ =>n=8:2\\ =>n=4\left(thoamanđk\right)\\ c,5.4n+13=1293\\ =>20n=1293-13\\ =>20n=1280\\ =>n=64\left(thoamanđk\right)\\ d,2.3n=162\\ =>6n=162\\ =>n=162:6\\ =>n=27\left(thoamanđk\right)\\ e,3n+3n+2=810\\ =>6n+2=810\\ =>6n=810-2\\ =>6n=808\\ =>n=\dfrac{404}{3}\left(kothaman\right)\\ =>n\in\varnothing\)
Đặt `A=a^2+a^3+...+a^60`
`=> A.a=a^2+a^3+a^4+...+a^61`
`=> A.a-a=(a^2+a^3+a^4+...+a^61)-(a^2+a^3+...+a^60)`
`=> a(A-1)=a^61-a^2`
Đặt A=a2+a3+...+a60
=>a.A=a3+a4+...+a61
=>a.A-A=(a3+a4+...+a61)-(a2+a3+...+a60)
=>A.(a-1)=a61-a2
=> A=\(\dfrac{a^{61}-a^2}{a-1}\)
Sửa đề :
720 : [ 41-(2x-5)]=23.5
Giải :
720 : [ 41-(2x-5)]=23.5
=> 720:[41-(2x-5)]=40
=> 41-(2x-5)=18
=> 2x-5=23
=> 2x=28
=> x = 14
Ta có :
A = 137 x 454 + 206
=> A = (138-1)x(453+1)+206
=> A = 138 x 453+138-453-1+206
=> A = 138 x 453 - 110
=> A = B
A = 137 x 454 + 206
A = (138 -1)(453 +1) + 206
A = 138.453 + 138 - 453 -1 + 206
A = 138.453 - 110
vậy A = B (đpcm)
= 2 x 8 x 4 x 5 x 25 x 125
= (8 x 125) x (25 x 4) x (2 x 5)
= 1000 x 100 x 10
= 1 000 000
Ta có :
E=a+a3+a5+...+a2n+1
=> a2.E=a3+a5+a7+...+a2n+3
=> a2.E-E=(a3+a5+a7+...+a2n+3)-(a+a3+a5+...+a2n+1)
=> (a2-1).E=a2n+3-1
=> E=\(\dfrac{a^{2n+3}-1}{a^2-1}\)