cho tam giác ABC lấy điểm D đối xứng với B qua A, điểm E đối xứng với C qua B. Gọi I là giao điểm của AC và DE. Biết DE= a. Tính DI theo a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Đặt A = u2 + v2 - 2u + 3v + 15
= (u2 - 2u + 1) + (v2 + 3v + 9/4) + 47/4
= (u - 1)2 + (v + 3/2)2 + 47/4 \(\ge\frac{47}{4}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}u-1=0\\v+\frac{3}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}u=1\\v=-\frac{3}{2}\end{cases}}\)
Vậy Min A = 47/4 <=> u = 1 ; y = -3/2
![](https://rs.olm.vn/images/avt/0.png?1311)
Dễ thì giải giúp toi cái. Không trả lời được xong vào cmt làm gì .-. Hay nhở
![](https://rs.olm.vn/images/avt/0.png?1311)
( x + 2 )3 - x2( x - 6 ) = 4
⇔ x3 + 6x2 + 12x + 8 - x3 + 6x2 - 4 = 0
⇔ 12x2 + 12x + 4 = 0
⇔ 4( 3x2 + 3x + 1 ) = 0
⇔ 3x2 + 3x + 1 = 0
Ta có : 3x2 + 3x + 1 = 3( x2 + x + 1/4 ) + 1/4 = 3( x + 1/2 )2 + 1/4 ≥ 1/4 > 0 ∀ x
=> Phương trình vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
\(M=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
Mà : x + y = 1
\(\Rightarrow M=x^2-xy+y^2=\frac{1}{2}x^2+\frac{1}{2}x^2-xy+\frac{1}{2}y^2+\frac{1}{2}y^2\)
\(=\frac{1}{2}\left(x^2+y^2\right)+\left(\frac{x}{\sqrt{2}}+\frac{y}{\sqrt{2}}\right)^2\ge\frac{1}{2}\left(x^2+y^2\right)\)
Ta có : \(x+y=1\)
\(\Leftrightarrow\left(x+y\right)^2=1\)
\(\Leftrightarrow x^2+y^2+2xy=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)-\left(x-y\right)^2=1\)( bước này tự tách từ trên ra nhé )
\(\Rightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\Leftrightarrow x=y\)
Ta lại có : \(M\ge\frac{1}{2}\left(x^2+y^2\right)=\frac{1}{2}.\frac{1}{2}=\frac{1}{4}\)
Dấu bằng xảy ra \(\Leftrightarrow x=y=\frac{1}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 2x2 - 5x3 = 0
⇔ x2( 2 - 5x ) = 0
⇔ \(\orbr{\begin{cases}x^2=0\\2-5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{5}\end{cases}}\)
b) ( x + 1 )( 2 - x ) - ( 3x + 5 )( x + 2 ) = -4x2 + 2
⇔ -x2 + x + 2 - ( 3x2 + 11x + 10 ) + 4x2 - 2 = 0
⇔ 3x2 + x - 3x2 - 11x - 10 = 0
⇔ -10x - 10 = 0
⇔ -10x = 10
⇔ x = -1
c) ( x + 3 )( x2 - 3x + 9 ) - x( x - 2 )2 = 27
⇔ x3 + 27 - x( x2 - 4x + 4 ) - 27 = 0
⇔ x3 - x3 + 4x2 - 4x = 0
⇔ 4x( x - 1 ) = 0
⇔ \(\orbr{\begin{cases}4x=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
d) ( x - 1 )( x - 5 ) + 3 = 0
⇔ x2 - 6x + 5 + 3 = 0
⇔ x2 - 6x + 8 = 0
⇔ x2 - 2x - 4x + 8 = 0
⇔ x( x - 2 ) - 4( x - 2 ) = 0
⇔ ( x - 2 )( x - 4 ) = 0
⇔ \(\orbr{\begin{cases}x-2=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=4\end{cases}}\)