Bài 1. Tìm giá trị lớn nhất của biểu thức:
\(A=-2x^2-10y^2+4xy+4x+4y+2013\)
Bài 2. tìm giá trị nhỏ nhát của biểu thức \(A=a^4-2a^3+2a^2-2a+2\)
Bài 3: Cho x,y \(\in Z\)chứng minh rằng;
\(N=\left(x-y\right).\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4\)là số chính phương
Bài 4. Cho các số a,b dương thỏa mãn : \(a^3+b^3=3ab-1\)
Chứng minh rằng \(a^{2018}+b^{2019}=2\)
Bài 5. Chứng minh rằng \(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9\)với mọi \(n\inℕ^∗\)
đéo biết
1) \(A=-2x^2-10y^2+4xy+4x+4y+2013=-2\left(x-y-1\right)^2-8\left(y-\frac{1}{2}\right)^2+2017\le2017\forall x,y\inℝ\)Đẳng thức xảy ra khi x = 3/2; y = 1/2
2) \(A=a^4-2a^3+2a^2-2a+2=\left(a^2+1\right)\left(a-1\right)^2+1\ge1\)
Đẳng thức xảy ra khi a = 1
3) \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4=\left(x^2-5xy+4y^2\right)\left(x^2-5x+6y^2\right)+y^4=\left(x^2-5xy+4y^2\right)^2+2y^2\left(x^2-5xy+4y^2\right)+y^4=\left(x^2-5xy+5y^2\right)^2\)(là số chính phương, đpcm)
4) \(a^3+b^3=3ab-1\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3ab+1=0\Leftrightarrow\left[\left(a+b\right)^3+1\right]-3ab\left(a+b+1\right)=0\)\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b+1\right)=0\Leftrightarrow\left(a+b+1\right)\left(a^2+b^2-ab-a-b+1\right)=0\)Vì a, b dương nên a + b + 1 > 0 suy ra \(a^2+b^2-ab-a-b+1=0\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\Leftrightarrow a=b=1\)
Do đó \(a^{2018}+b^{2019}=1+1=2\)
5) \(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9\)(Do số chính phương chia 3 dư 1 hoặc 0)