K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2020

theo hệ thức vi ét ta có \(\hept{\begin{cases}x_1+x_2=5m-1\\x_1x_2=6m^2-2m\end{cases}}\)

do đs \(x_1^2+x_2^2=1\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2=1\Leftrightarrow\left(5m-1\right)^2-2\left(6m^2-2m\right)=1\)

=>\(25m^2-10m+1-12m^2+4m=1\)

=>\(13m^2-6m=0=>\orbr{\begin{cases}m=0\\13m-6=0\end{cases}=>\orbr{\begin{cases}m=0\\m=\frac{6}{13}\end{cases}}}\)

zậy m=0 h m=6/13 thì phương trình có hai nghiêm\(x_1,x_2\)thảo mãn \(x_1^2+x_2^2=1\)

19 tháng 3 2020

theo vi-et có 

\(x_1+x_2=m;x_1x_2=-2\)ta có:

\(x_1^2+x_2^2-3x_1x_2=14\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2=14\)

\(=>m^2+10=14=>m^2=4=>m=\pm2\)

19 tháng 3 2020

gọi tử số của phân số cần tìm là a

mẫu số của phân số cần tìm là a+5

nêu thêm tử 17 đơn zị , mẫu 2 đơn zị thì ta có 

\(\frac{a+17}{a+7}\) 

theo đề bài t có phương trình

\(\frac{a+17}{a+7}=\frac{a+5}{a}\)\(\Leftrightarrow\)\(a\left(a+17\right)=\left(a+5\right)\left(a+7\right)\Leftrightarrow a^2+17a=a^2+7a+5a+35\)

=>\(5a=35=>a=7\)

phâ số cần tìm là \(\frac{7}{12}\)

23 tháng 3 2020

a)\(B=\left(\frac{3}{x-1}+\frac{1}{\sqrt{x}+1}\right):\frac{1}{\sqrt{x}+1}\)

\(B=\left(\frac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{1}{\sqrt{x}+1}\right)\times\left(\sqrt{x}+1\right)\)

\(B=\frac{3+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\times\left(\sqrt{x}+1\right)\)

\(B=\frac{2+\sqrt{x}}{\sqrt{x}-1}\)

19 tháng 3 2020

tứ giác AECI có

\(\widehat{EAI}+\widehat{ECI}=90^0+90^0=180^0\)

=> tứ giác AECI nội tiếp

tứ giác BFCI có

\(\widehat{FCI}+\widehat{IBF}=90^0+90^0=180^0\)

=> tứ giác BFCI nọi tiếp

19 tháng 3 2020

a) xét tứ giác ABOC có 

\(\widehat{ABO}+\widehat{ACO}=90^0\)(AB , AC tiếp tuyến)

=>\(\widehat{ABO}+\widehat{ACO}=180^0\)

=> tứ giác ABOC nội  tiếp

=> \(\widehat{BOA}=\widehat{ACB}\)( chắn \(\widebat{BA}\))

b) ta có \(\hept{\begin{cases}AB=AC\left(cmt\right)\\OB=OC=R\end{cases}}\)

=> AO là đường trung trực của BC

=> \(AH\perp BC,HB=HC\)

=> \(\Delta IHB=\Delta IHC\left(c.g.c\right)\)

=>\(\widehat{HBI}=\widehat{ICH}=>\widebat{CI}=\widebat{BI}\)

\(=>\widehat{IBA}=\widehat{IBH}\)( chắn CI , BI )

=> IB là tia phân giác của góc ABC 

c)xét tam giác OCA có \(CH\perp CA=>OC^2=OH.OA\)

mà \(OC=OD=>OC^2=OD^2\)

=>\(OD^2=OH.OA\)

19 tháng 3 2020

mình làm lại nha

câu c, d nè :

c) áp dụng hệ thức lượng trong tam giác zuông ABO ta có

\(OH.OA=OB^2=OD^2=>OH.OA=OD^2\Leftrightarrow\)\(\frac{OH}{OD}=\frac{OD}{OA}=>\Delta OHD=\Delta ODA=>\widehat{OAD}=\widehat{ODH}\)

gọi J là  là tâm đường tròn  ngoại tiếp tam giác AHD

khi đó \(\widehat{OAD}=\frac{1}{2}\widehat{DJH}\)

zậy 

\(\widehat{JDO}=\widehat{ODH}+\widehat{JDH}=\frac{1}{2}\widehat{DJH}+\widehat{JDH}=\frac{1}{2}\left(\widehat{DJH}+2\widehat{JDH}\right)=\frac{1}{2}.180^0=90^0\)

=> OD là ....

d) CHỉ ra M, N thuộc trung trực AH

theo cm ở cau C thì \(OD\perp JD\)nên J thuộc tiếp tuyến tại D của (O)

Mặt khác J là tâm đường tròn ngoại tiếp tam giác AHD nên J thuộc trung trực của AC

zậy J là giao điểm của tiếp tuyến tại D của (O) zà đường trung trực AD

=> J trùng E

zậy E là tâm đường tròn ngoại tiếp tam giác AHD nên E thuộc trung trực của AH

mặt khác M , N  đều thuộc trung trực của AH nên M ,E ,N thẳng hàng