Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chắc 1,2 ở đây là 1,2 m
Lời giải:
Lượng nước trong bể hiện tại: $1,2\times 1,2\times 1,2\times \frac{2}{5}=0,6912$ (m3)
Đổi $0,6912$ m3 = 691,2 lít
Người ta dùng hết 3/4 lượng nước thì lượng nước còn lại chiếm $1-\frac{3}{4}=\frac{1}{4}$ lượng nước ban đầu của bể.
Lượng nước còn lại là:
$691,2\times \frac{1}{4}=172,8$ (lít)
\(\dfrac{5040}{40320}\) = \(\dfrac{5040:5040}{40320:5040}\) = \(\dfrac{1}{8}\)
Lời giải:
a.
Số hs loại tốt: $150\times \frac{1}{5}=30$ (hs)
Số hs loại khá: $150\times 44:100=66$ (hs)
Số hs loại đạt là: $30\times 5:3=50$ (hs)
Số hs chưa đạt: $150-30-66-50=4$ (hs)
b.HSG là học sinh loại nào bạn? Trong đề chỉ có 4 loại: tốt, khá, đạt, chưa đạt.
x^2+xy+3x+2y=1 tương đương y=(1-x^2-3x)/(x+2) suy ra x+2 thuộc ước của 3
1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔHBA
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100=10^2\)
=>BC=10(cm)
ΔABC~ΔHBA
=>\(\dfrac{AB}{HB}=\dfrac{BC}{BA}=\dfrac{AC}{HA}\)
=>\(\dfrac{6}{HB}=\dfrac{10}{6}=\dfrac{8}{HA}\)
=>\(HA=6\cdot\dfrac{8}{10}=4,8\left(cm\right);HB=6\cdot\dfrac{6}{10}=3,6\left(cm\right)\)
2: Xét ΔMAB vuông tại A và ΔMIC vuông tại I có
\(\widehat{AMB}=\widehat{IMC}\)(hai góc đối đỉnh)
Do đó: ΔMAB~ΔMIC
=>\(\dfrac{MA}{MI}=\dfrac{MB}{MC}\)
=>\(MA\cdot MC=MB\cdot MI\)
B = \(\dfrac{4n+3}{3n+1}\) ( n \(\in\) z)
Gọi ước chung lớn nhất của 4n + 3 và 3n + 1 là d thì:
\(\left\{{}\begin{matrix}4n+3⋮d\\3n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(4n+3\right)3⋮d\\\left(3n+1\right)4⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}12n+9⋮d\\12n+4⋮d\end{matrix}\right.\)
⇒ 12n + 9 - 12n - 4 ⋮ d
(12n - 12n) + (9 - 4) ⋮ d
5 ⋮ d
d \(\in\) Ư(5) = {1; 5}
Để phân số A có thể rút gọn được thì d = 5
Với d =5 ta có:
4n + 3 ⋮ 5 và 3n + 1 ⋮ 5 ⇒ 4n+ 3 - (3n + 1)⋮ 5
4n + 3 - 3n - 1 ⋮ 5
(4n - 3n) + (3 - 1)⋮ 5
n + 2 ⋮ 5
n = 5k - 2
Vậy n là các số tự nhiên thỏa mãn n = 5k - 2 (k \(\in\) N*) thì A có thể rút gọn được.
a.
Do chóp S.ABCD đều \(\Rightarrow SO\perp\left(ABCD\right)\)
\(\Rightarrow\) O là hình chiếu vuông góc của S lên (ABCD)
\(\Rightarrow\Delta OAB\) là hình chiếu vuông góc của \(\Delta SAB\) lên (ABCD)
b.
Gọi E là trung điểm CD \(\Rightarrow OE\) là đường trung bình tam giác BCD
\(\Rightarrow OE||BC\Rightarrow OE\perp CD\)
\(\Rightarrow CD\perp\left(SOE\right)\)
Trong mp (SOE), từ O kẻ \(OK\perp SE\)
\(OK\in\left(SOE\right)\Rightarrow CD\perp OK\)
\(\Rightarrow OK\perp\left(SCD\right)\)
Trong mp (ACK), qua A kẻ đường thẳng song song OK cắt CK kéo dài tại H
\(\Rightarrow AH\perp\left(SCD\right)\Rightarrow SH\) là hình chiếu vuông góc của SA lên (SCD)
\(\Rightarrow\widehat{ASH}\) là góc giữa SA và (SCD) hay \(\widehat{ASH}=\varphi\)
\(OE=\dfrac{1}{2}BC=\dfrac{a}{2}\)
Áp dụng hệ thức lượng trong tam giác vuông SOE:
\(OK=\dfrac{SO.OE}{\sqrt{SO^2+OE^2}}=\dfrac{a\sqrt{5}}{5}\)
O là trung điểm AC và \(OK||SH\Rightarrow OK\) là đường trung bình tam giác CAH
\(\Rightarrow AH=2OK=\dfrac{2a\sqrt{5}}{5}\)
\(OA=\dfrac{1}{2}AC=\dfrac{a\sqrt{2}}{2}\Rightarrow SA=\sqrt{SO^2+OA^2}=\dfrac{a\sqrt{6}}{2}\)
\(\Rightarrow sin\varphi=\dfrac{AH}{SA}=\dfrac{2\sqrt{30}}{15}\)