Cho phương trình: \(2018x^2-\left(m-2019\right)x-2020=0\) ( m là tham số). Tìm m để phương trình có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\sqrt{x_1^2+2019}-x_1=\sqrt{x_2^2+2019}+x_2\)
PLEASE HELP ME :>
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B H C F N M E
a) \(\hept{\begin{cases}\widehat{HFE}=\widehat{HAE}\\\widehat{HAE}+\widehat{ABH}=90^O\end{cases}\Rightarrow\widehat{HFE}+\widehat{ABH}=90^O}\)
=> \(\widehat{HFE}+\widehat{ABC}=90^O\)(đpcm)
b) AEHF nội tiếp => \(\widehat{AEF}=\widehat{AHF}\)
Mà \(\widehat{AHF}=\widehat{ACB}\)( cùng phụ với \(\widehat{HAC}\))
=> \(\widehat{AEF}=\widehat{ACB}\)
=> BEFC là tứ giác nội tiếp
\(\Rightarrow\hept{\begin{cases}\widehat{EBF}=\widehat{FCE}\\\widehat{BEM}=\widehat{NFC}=90^O\end{cases}\Rightarrow\widehat{EMB}=\widehat{FNC}}\)
\(\Rightarrow\widehat{EMF}=\widehat{ENF}\)
=> EMNF là tứ giác nội tiếp
=> góc ENM = góc EFB
Mà BEFC nội tiếp => góc EFB = góc ECB
Từ 2 điều trên => góc ENM = góc ECB
=> MN // BC => đpcm
Gọi số thí sinh là x ( \(\inℕ^∗\) ; học sinh ) và số phòng thi là y ( \(\inℕ^∗\); phòng )
+) Nếu mỗi phòng chỉ có 25 học sinh thì có 14 học sinh chưa có phòng thi:
=> x = 25.y + 14 (1)
+) Nếu mỗi phòng có 26 học sinh thì phòng cuối cùng chỉ có 5 bạn:
=> x = 26 ( y - 1) + 5 (2 )
Từ (1) ; (2) ta có hệ: \(\hept{\begin{cases}x-25y=14\\x-26y=-21\end{cases}}\Leftrightarrow\hept{\begin{cases}x=889\\y=35\end{cases}}\)( thỏa mãn)
Vậy có 889 thí sinh và 35 phòng thi