K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

Ta có : 6.x2 + 15.x + \(\sqrt{2.x^2+5.x+1}=1\)

<=> 3.( 2.x2 + 5.x + 1 ) + \(\sqrt{2.x^2+5.x+1}-4=0\)

Đặt \(\sqrt{2.x^2+5.x+1}=a\left(a>0\right)\)

=> 3.a2 + a -4 =0

<=> ( 3.a + 4 ) .( a - 1 ) = 0

=> a = 1 => 2.x2 + 5.x +  1 =1 

<=> \(\orbr{\begin{cases}x=0\\x=\frac{-5}{2}\end{cases}}\)

Vậy nghiệm cuối cùng là { 0 ; \(\frac{-5}{2}\)

6 tháng 4 2020

Đường thẳng y = mx + n đi qua điểm A ( -1 ; -2 ) nên 

-2 = -m + n ,suy ra n = m-2 

Phương trình đường thẳng có dạng y = mx + ( m -2 ) .Điều kiện để đường thẳng tiếp xúc với parabol là phương trình \(\frac{x^2}{4}=mx+\left(m-2\right)\)        (1) 

có nghiệm kép .Biến đổi (1) ta được : x2 -4.m.x - 4. ( m-2) =0          (2) 

Điều kiện để ( 1 ) cũng có nghĩa là ( 2 ) có nghiệm kép là : 

\(\Delta'=4m^2+4m-8=0\Leftrightarrow m^2+m-2=0\)

<=> ( m+2 ) . ( m-1 ) = 0 <=> m =-2 hoặc m = 1 .

Vậy các hệ số m , ncaanf tìm là m = -2 ; n = -4 và m =1 ; n=-1 

6 tháng 4 2020

                                                       Giải

a) \(\Delta=\left(-m\right)^2-4.\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0,\forall m\)

Phương trình đã cho có 2 nghiệm phân biệt ,\(\forall m\Leftrightarrow m-2\ne0\)

                                                                               <=> \(m\ne2\)

b) Theo định lí Viet ta có : \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)

6 tháng 4 2020

hai cạnh góc vuông đó có độ dài là (8cm)và (6cm)

mình nghĩ như vậy nếu sai bạn thông cảm nha !!!

chúc bạn học tốt

Gọi 2 cạch góc vuông của tam giác lần lượt là a,b :

Ta có : Hai cạch góc vuông hơn kém nhau 2 cm 

=> a - b = 2 ( 1 )

Áp dụng định lý pi - ta - go vào tam giác ta đc :

a^2+b^2=10^2(2)

Từ ( 1 ) và ( 2 ) suy ra :

+) a = b+2 thay vào : ( b + 2 )^2 + b^2 = 100

<=> 2b^2 + 4b -96 = 0

=> b=6 ( t/m )hoặc b=8 ( loại )

=> b = 6

=> a =8 

Vậy : S = 1/2 .6 . 8 = 24

5 tháng 4 2020

ĐK: \(\hept{\begin{cases}x\ge\frac{1}{2}\\x-\sqrt{2x-1}\ge0\end{cases}}\)(@@)

Nhân hai vế với căn 2

pt <=> \(\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}=2\)

<=> \(\sqrt{2x-1+2\sqrt{2x-1}+1}-\sqrt{2x-1-2\sqrt{2x-1}+1}=2\)

<=> \(\sqrt{\left(\sqrt{2x-1}+1\right)^2}-\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)

<=> \(\sqrt{2x-1}+1-\left|\sqrt{2x-1}-1\right|=2\)(1)

TH1: \(\sqrt{2x-1}-1\ge0\Leftrightarrow x\ge1\)

(1) <=> \(2=2\)đúng với \(x\ge1\)thỏa mãn (@@)

TH2: \(\sqrt{2x-1}-1< 0\Leftrightarrow x< 1\)

(1) <=> \(2\sqrt{2x-1}=2\Leftrightarrow\sqrt{2x-1}=1\Leftrightarrow x=1\)( loại )

Kết hợp 2 th ta có: với mọi x thỏa mãn \(x\ge1\)là nghiệm.

7 tháng 4 2020

\(\sqrt{x+\sqrt{2x-1}}-\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\left(1\right)\)

ĐK \(x>\frac{1}{2}\)

(1) <=> \(\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}=2\)

\(\Leftrightarrow\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)

\(\Leftrightarrow\sqrt{2x-1}+1\left|\sqrt{2x-1}-1\right|=2\)

\(\Leftrightarrow\left|\sqrt{2x-1}-1\right|=1-\sqrt{2x-1}\)

Áp dụng BĐT |A| \(\ge\)A. Xảy ra dấu "=" khi A \(\le\)0

Ta có \(\left|\sqrt{2x-1}-1\right|\ge1-\sqrt{2x-1}\)

Xảy ra \(\left|\sqrt{2x-1}-1\right|=1-\sqrt{2x-1}\)

\(\Leftrightarrow\sqrt{2x-1}-1\le0\)

\(\Leftrightarrow\sqrt{2x-1}\le1\)

\(\Leftrightarrow x\le1\)

Kết hợp với điều kiện \(x\ge\frac{1}{2}\)

Vậy phương trình (1) có nghiệm \(\frac{1}{2}\le x\le1\)

Trả lời:

1.      Ta có ÐCAB = 900 ( vì tam giác  ABC vuông tại A); ÐMDC = 900 ( góc nội tiếp chắn nửa đường tròn ) => ÐCDB = 900 như vậy D và A cùng nhìn BC dưới một góc bằng 900 nên A và D cùng nằm trên đường tròn  đường kính BC => ABCD là tứ giác nội tiếp.

2.      ABCD là tứ giác nội tiếp => ÐD1= ÐC3( nội tiếp cùng chắn cung AB).

3. Theo trên Ta có => ÐD1= ÐD2 => DM là tia phân giác của góc ADE.

                                      ~Học tốt!~