trong oxy cho tam giac ABC co A(1;1), B(-3;2), C(-1;3) va duong thang (d): 2x-y+3=0 viet phuong trinh duong thang delta di qua trong tam G cua tam giac ABC va song song voi duong thang (d)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\left(1+\frac{1}{x}\right)^4+\left(1+\frac{1}{y}\right)^4+\left(1+\frac{1}{z}\right)^4\ge\frac{\left[\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2+\left(1+\frac{1}{z}\right)^2\right]^2}{3}\)(1)
\(\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2+\left(1+\frac{1}{z}\right)^2\ge\frac{\left(1+\frac{1}{x}+1+\frac{1}{y}+1+\frac{1}{z}\right)^2}{3}=\frac{\left(3+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{3}\)(2)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{1}=9\)(3)
Từ (1), (2) và (3) => \(\left(1+\frac{1}{x}\right)^4+\left(1+\frac{1}{y}\right)^4+\left(1+\frac{1}{z}\right)^4\ge768\left(đpcm\right)\)
Đẳng thức xảy ra <=> x=y=z=1/3