Cho tam giác ABC, M trong tam giác; các đường thẳng AM,BM,CM lần lượt cắt các cạnh BC, AC,AB tại A1;B1;C1
Xác định vị trí M để tổng \(\sqrt{\frac{AM}{A_1M}}+\sqrt{\frac{BM}{B_1M}}+\sqrt{\frac{CM}{C_1M}}\) đạt GTNN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ AD là đường phân giác của \(\Delta ABC\)
Vẽ BH _|_ AD, CK _|_ AD (H;K \(\in\) AD)
Ta có: \(\widehat{BAH}=\widehat{CAK}=\frac{\widehat{BAC}}{2}\)
Xét tam giác BAH vuông tại H, theo hệ thức giữa các cạnh và các góc của 1 tam giác vuông ta có:
\(BH=AB\sin\widehat{BAH}=AB\cdot\sin\frac{\widehat{BAC}}{2}\)
Tương tự \(CK=AC\cdot\sin\frac{\widehat{BAC}}{2}\)
\(BH\le BD\left(BH\perp HD\right);CK\le CD\left(CK\perp KD\right)\)
Nên \(BH+CK\le BD+CD=BC\)
Do đó: \(\left(AB+AC\right)\sin\frac{\widehat{BAC}}{2}\le BC\Rightarrow\sin\frac{\widehat{BAC}}{2}\le\frac{5}{6}\)
Dấu "=" xảy ra <=> H,D,K trùng nhau
Vậy GTLN \(\sin\frac{\widehat{BAC}}{2}=\frac{5}{6}\)
Bài toán phụ: Cho tam giác ABC có \(\widehat{A}=120^o\). Khi đó BC2=AB2+AC2+AB.AC
Chứng minh: Gọi H là hình chiếu của C trên AB
\(AH=\frac{1}{2}AC;CH=\frac{\sqrt{3}}{2}AC\left(1\right)\)
Theo định lý Pytago, ta có: BC2=BH2+CH2 (2)
Từ (1)(2) => BC2=(AB+AH)2+CH2=\(\left(AB+\frac{1}{2}AC\right)^2+\left(\frac{\sqrt{3}}{2}AC\right)^2\)
\(=AB^2+AB\cdot AC+\frac{1}{4}AC^2+\frac{3}{4}AC^2=AB^2+AC^2+AB\cdot AC\)
Không mất tính tổng quát giả sử M thuộc cung \(\widebat{BC}\) (không chứa A) của (O)
Chứng minh được MA=MB+MC
=> MA2=MB2+MC2+2.MB.MC
=> MA2+MB2+MC2=2(MB2+MC2+MB.MC)(3)
Theo BĐ1 ta có: MB2+MC2+MB.MC=BC2
=> MB2+MC2+MB.MC=3R2
Từ (1) (2) => MA2+MB2+MC2=6R2
*Không vẽ được hình, bạn thông cảm*
Gọi O' là điểm trên IO sao cho \(IO'=\frac{1}{3}IO\)
Xét \(\Delta\)IAO có: \(\frac{IA'}{IA}=\frac{IO'}{IO}\left(=\frac{1}{3}\right)\Rightarrow O'A'//OA\) (định lý Talet đảo)
Do đó: \(\frac{O'A'}{OA}=\frac{IA'}{IA}=\frac{1}{3}\Rightarrow O'A'=\frac{1}{3}R\)
Cmtt ta được: \(O'B'=\frac{1}{3}R;O'C'=\frac{1}{3}R;O'D'=\frac{1}{3}R\)
Ta có: \(\sqrt{\frac{AM}{A_1M}}+\sqrt{\frac{BM}{B_1M}}+\sqrt{\frac{CM}{C_1M}}=\sqrt{\frac{S_2+S_3}{S_1}}+\sqrt{\frac{S_1+S_3}{S_2}}+\sqrt{\frac{S_1+S_2}{S_3}}\)
\(\ge\sqrt{\frac{\left(\sqrt{S_2}+\sqrt{S_3}\right)^2}{2S_1}}+\sqrt{\frac{\left(\sqrt{S_1}+\sqrt{S_3}\right)^2}{2S_2}}+\sqrt{\frac{\left(\sqrt{S_1}+\sqrt{S_2}\right)^2}{2S_3}}\)
\(=\frac{1}{\sqrt{2}}\left(\frac{\sqrt{S_2}+\sqrt{S_3}}{\sqrt{S_1}}+\frac{\sqrt{S_1}+\sqrt{S_3}}{\sqrt{S_2}}+\frac{\sqrt{S_1}+\sqrt{S_2}}{\sqrt{S_3}}\right)\frac{1}{2}\cdot6=3\sqrt{2}\)
Dấu "=" xảy ra khi S1 =S2=S3 <=> M là trọng tâm \(\Delta ABC\)