gf95646456 -ghrgd551456\415545 =94774787 05455146495 (47415966259+898591874254)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Một cách "đơn giản" và "ngây thơ", ta thấy mỗi chữ số đều có 10 cách chọn (từ 0 đến 9) nên có tất cả \(10^4=10000\) biển số.
Tuy nhiên, ngoài lề một chút thì nếu theo đúng luật giao thông, kể cả mã tỉnh (từ 11 đến 99 - có 89 mã; và 2 kí tự seri, mỗi kí tự có thể là một trong 20 chữ cái in hoa sau: A, B, C, D, E, F, G, H, K, L, M, N, P, S, T, U, V, X, Y, Z. Chưa kể là còn có 4 loại màu biển số xe (trắng, xanh, đỏ, vàng) và mỗi loại biển số có quy định tạo biển số xe khác nhau nên lúc này số biển số sẽ tăng lên gấp rất nhiều lần, lưu ý là không tồn tại biển số xe 0000 nếu đăng ký đúng pháp luật)

4b.
Gọi O là giao điểm AC và BD \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{0}\\\overrightarrow{OB}+\overrightarrow{OD}=\overrightarrow{0}\end{matrix}\right.\)
\(T=\left(\overrightarrow{MO}+\overrightarrow{OA}\right)\left(\overrightarrow{MO}+\overrightarrow{OC}\right)+\left(\overrightarrow{MO}+\overrightarrow{OB}\right)^2+\left(\overrightarrow{MO}+\overrightarrow{OD}\right)^2\)
\(=3MO^2+\overrightarrow{MO}.\left(\overrightarrow{OA}+\overrightarrow{OC}\right)+\overrightarrow{OA}.\overrightarrow{OC}+OB^2+OD^2+2\overrightarrow{MO}\left(\overrightarrow{OB}+\overrightarrow{OD}\right)\)
\(=3MO^2-OA^2+OB^2+OD^2\)
\(=3MO^2+OA^2\) (do \(OA=OB=OD\) theo t/c hình chữ nhật)
OA cố định nên T min khi \(MO^2\) min
\(\Rightarrow M\) là hình chiếu vuông góc của O lên cạnh hình chữ nhật
Mà \(AB>AD\)
\(\Rightarrow M\) là hình chiếu vuông góc của O lên AB hoặc AD
\(\Rightarrow M\) là trung điểm AB hoặc AD

ĐKXĐ: \(x\ge-\dfrac{4}{3}\)
\(\left(x^2+6x+13\right)\left(\dfrac{9\left(5x+9\right)-4\left(3x+4\right)}{3\sqrt{5x+9}+2\sqrt{3x+4}}\right)=33x+65\)
\(\Leftrightarrow\dfrac{\left(x^2+6x+9\right)\left(33x+65\right)}{3\sqrt{5x+9}+2\sqrt{3x+4}}=33x+65\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{65}{33}< -\dfrac{4}{3}\left(ktm\right)\\x^2+6x+9=3\sqrt{5x+9}+2\sqrt{3x+4}\left(1\right)\end{matrix}\right.\)
Xét (1)
\(\Leftrightarrow x^2+x+3\left(x+3-\sqrt{5x+9}\right)+2\left(x+2-\sqrt{3x+4}\right)=0\)
\(\Leftrightarrow x^2+x+\dfrac{3\left(x^2+x\right)}{x+3+\sqrt{5x+9}}+\dfrac{2\left(x^2+x\right)}{x+2+\sqrt{3x+4}}=0\)
\(\Leftrightarrow\left(x^2+x\right)\left(1+\dfrac{3}{x+3+\sqrt{5x+9}}+\dfrac{2}{x+2+\sqrt{3x+4}}\right)=0\)
\(\Leftrightarrow x^2+x=0\) (ngoặc phía sau luôn dương khi \(x\ge-\dfrac{4}{3}\))
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Câu 1:
PT $\Leftrightarrow 3x^2+6x+3=2x^2-5x+3$
$\Leftrightarrow x^2+11x=0$
$\Leftrightarrow x(x+11)=0$
$\Leftrightarrow x=0$ hoặc $x+11=0$
$\Leftrightarrow x=0$ hoặc $x=-11$
Thử lại thấy đều thỏa mãn.
Câu 2:
PT $\Leftrightarrow 2x^2-3x+1=x^2+2x-3$ (bình phương 2 vế)
$\Leftrightarrow x^2-5x+4=0$
$\Leftrightarrow (x-1)(x-4)=0$
$\Leftrightarrow x-1=0$ hoặc $x-4=0$
$\Leftrightarrow x=1$ hoặc $x=4$
Thử lại thấy đều thỏa mãn.
Vậy..........

Bạn xem lại đề bài nhé, vì thông thường phương trình hàm có 2 biến \(x,y\) chỉ có 1 phương trình thôi.
Hơn nữa nếu đề bài như thế này thì giải rất dễ. Từ pt thứ hai cho \(x=c\) với c là hằng số bất kì thì thu được \(f\left(y\right)=2y+C,\forall x,y\inℝ^+\left(C=-f\left(c\right)\right)\) là hàm số bậc nhất. Thay lại vào pt đầu tiên thì thấy vô lí.
Nên mình nghĩ đề bài có thể là
"\(f\left(x+3f\left(y\right)\right)=f\left(x\right)+f\left(y\right)\pm2y,\forall x,y\inℝ^+\)

Theo định lý Vi-ét:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{3b}{2a}\\x_1x_2=\dfrac{2c}{a}\end{matrix}\right.\)
Do đó \(T=\left|x_1-x_2\right|\)
\(=\sqrt{\left(x_1-x_2\right)^2}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\sqrt{\left(-\dfrac{3b}{2a}\right)^2-4.\dfrac{2c}{a}}\)
\(=\sqrt{\left(\dfrac{3b}{2a}\right)^2-\dfrac{8c}{a}}\)
Ta có \(a+9b+24c=0\)
\(\Leftrightarrow1+\dfrac{9b}{a}+\dfrac{24c}{a}=0\)
\(\Leftrightarrow\dfrac{24c}{a}=-\dfrac{9b}{a}-1\)
\(\Leftrightarrow\dfrac{8c}{a}=-\dfrac{3b}{a}-\dfrac{1}{3}\)
Do đó \(T=\sqrt{\left(\dfrac{3b}{2a}\right)^2+\dfrac{3b}{a}+\dfrac{1}{3}}\) \(\ge0\)
\(T=\sqrt{\left(\dfrac{3b}{2a}\right)^2+2.\dfrac{3b}{2a}+1-\dfrac{2}{3}}\)
\(T=\sqrt{\left(\dfrac{3b}{2a}+1\right)^2-\dfrac{2}{3}}\) \(\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\left(\dfrac{3b}{2a}+1\right)^2=\dfrac{2}{3}\)
\(\Leftrightarrow...\)
Vậy ...

Đặt \(BC=x\left(cm\right)\) (ĐK: \(x>9\))
\(\Rightarrow AC=BC-9=x-9\left(cm\right)\)
Theo định lý Py-ta-go ta có:
\(BC^2=AC^2+AB^2\Rightarrow AB^2=BC^2-AC^2\)
\(\Rightarrow AB=\sqrt{x^2-\left(x-9\right)^2}=\sqrt{x^2-\left(x^2-18x+81\right)}\)
\(\Rightarrow AB=\sqrt{18x-81}\)
Theo đề bài: \(C_{ABC}=70\left(cm\right)\)
\(\Rightarrow AB+AC+BC=70\)
\(\Rightarrow\sqrt{18x-81}+\left(x-9\right)+x=70\)
\(\Rightarrow\sqrt{18x-81}=79-2x\left(x\le\dfrac{79}{2}\right)\)
\(\Rightarrow18x-81=\left(79-2x\right)^2\)
\(\Rightarrow18x-81=6241-316x+4x^2\)
\(\Rightarrow4x^2-334x+6322=0\)
\(\Delta=\left(-334\right)^2-4\cdot4\cdot6322=10404>0\)
\(x_1=\dfrac{334+\sqrt{10404}}{2\cdot4}=\dfrac{109}{2}>\dfrac{79}{2}\left(ktm\right)\)
\(x_2=\dfrac{334-\sqrt{10404}}{2\cdot4}=29\left(tm\right)\)
\(\Rightarrow BC=29\left(cm\right)\)
\(AC=29-9=20\left(cm\right)\)
\(AB=\sqrt{18\cdot29-81}=21\left(cm\right)\)
Vậy: ...