Cho tam giác nhọn ABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K
a) CM AH vuông góc với BC
b) CM tứ giác BHCK là hình bình hành
c) Gọi I là trung điểm của AK, M là trung điểm của BC. CM 3 điểm H,M,K thẳng hàng và IM = AH : 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Do đó: \(\frac{a^3+b^3+c^3}{4abc}=\frac{3}{4}+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{4abc}\)
\(=\frac{3}{4}+\frac{1}{4}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\ge\frac{3}{4}+\frac{1}{4}.\frac{9}{ab+bc+ca}\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=\frac{3}{4}+\frac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\frac{9}{4}=\frac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\frac{3}{2}\)
\(\Rightarrow P\ge\frac{1}{30}+\frac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}+\frac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}-\frac{3}{2}\)
\(=\frac{-22}{15}+\frac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}+\frac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}\)
\(\ge\frac{-22}{15}+2\sqrt{\left[\frac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\right]\left[\frac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}\right]}=\frac{-22}{15}+\frac{2}{15}=\frac{-4}{3}\)
Dấu '=' xảy ra <=> a=b=c
Vậy GTNN của P là -4/3 khi a=b=c
\(2x\left(x-1\right)-\left(x-1\right)\left(x-2\right)\)
\(=\left(x-1\right)\left(2x-x-2\right)\)
\(=\left(x-1\right)\left(x-2\right)\)
x^5+x^2+1
=(x^5-x)+(x^2+x+1)
=x(x^6-1)+(x^2+x+1)
=x(x^3+1)(x^3-1)+(x^2+x+1)
=x(x^3+1)(x-1)(x^2+x+1)+(x^2+x+1)
=(x^2+x+1)[x(x^3+1)(x-1)+1]
=(x^2+x+1)(x^5-x^4+x^2-x+1)
Ta có : ( 3x - 1 )( 2x + 7 ) - ( 12x3 + 8x2 - 14x ) : 2x
= 6x2 + 21x - 2x - 7 - [ ( 12x3 : 2x ) + ( 8x2 : 2x ) - ( 14x : 2x ) ]
= 6x2 + 19x - 7 - ( 6x2 + 4x - 7 )
= 6x2 + 19x - 7 - 6x2 - 4x + 7
= 15x
Đề có đúng không ? Nếu đúng thì chỉ tìm được Max thôi
P = x2 + 4x + 1 - 12( x + 2 )2 + 2093
= x2 + 4x - 12( x2 + 4x + 4 ) + 2094
= x2 + 4x - 12x2 - 48x - 48 + 2094
= -11x2 - 44x + 2046
= -11( x2 + 4x + 4 ) + 2090
= -11( x + 2 )2 + 2090 ≤ 2090 ∀ x
Dấu "=" xảy ra khi x = -2
=> MaxP = 2090 <=> x = -2