Hình thoi ABCD có góc A bằng 60o đường thẳng MN cắt cạnh AB,AC theo thứ tự M,N Biết MB NB bằng độ dài cạnh hình thoi Tính góc MDN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^7+x^2+1=x^7-x+x^2+x+1\)
\(=\left(x^7-x\right)+\left(x^2+x+1\right)=x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x\left[\left(x^3\right)^2-1\right]+\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x^3+1\right)\left(x-1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left[\left(x^4+x\right)\left(x-1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
Cách nhẩm nghiệm:
\(ax^2+bx+c=0\)
+) Nếu \(a+b+c=0\)thì phương trình có nghiệm là \(1\)
\(\Rightarrow\)Khi phân tích đa thức thành nhân từ thì sẽ chứa hạng tử \(x-1\)
+) Nếu \(a-b+c=0\)thì phương trình có nghiệm là \(-1\)
\(\Rightarrow\)Khi phân tích đa thức thành nhân tử thì sẽ chứa hạng tử \(x+1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)\(\Leftrightarrow x^2yz+xz=xy^2z+xy=xyz^2+yz\)
\(\Leftrightarrow\hept{\begin{cases}xyz\left(x-y\right)=x\left(y-z\right)\\xyz\left(y-z\right)=y\left(z-x\right)\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}xyz\left(x-y\right)=x\left(y-z\right)\\xyz\left(y-z\right)=y\left(z-x\right)\\xyz\left(z-x\right)=z\left(y-x\right)\end{cases}}\Leftrightarrow x^3y^3z^3.\left(x-y\right)\left(y-z\right)\left(z-x\right)=-xyz.\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x^3y^3z^3=-xyz\\\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\end{cases}\Leftrightarrow\orbr{\begin{cases}xyz=\pm1\\x=y=z\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(3\left(x-1\right)^2+\left(x+5\right)\left(2-3x\right)=25\)
\(3x^2-6x+3-3x^2-13x+10=25\)
\(-19x+13=25\)
\(-19=25-13\)
\(-19x=12\)
\(x=\frac{-12}{19}\)
\(3\left(x-1\right)^2+\left(x+5\right)\left(2-3x\right)=25\)
\(3\left(x^2-2x+1\right)+2x-3x^2+10-15x=25\)
\(3x^2-6x+3+2x-3x^2+10-15x=25\)
\(-18x+13=25\)
\(-18x=12\)
\(x=-\frac{2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(xy^2-y^2+1-x^2=\left(xy^2-y^2\right)+\left(1-x^2\right)\)
\(=y^2\left(x-1\right)-\left(x^2-1\right)=y^2\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(y^2-x-1\right)\)
xy 2 − y 2 + 1 − x 2 = (xy 2 − y 2 )+ (1 − x 2 )
= y 2 (x − 1 )− (x 2 − 1)
= y 2 (x − 1) −( x − 1)(x + 1)
= (x − 1 ) (y 2 − x − 1 )
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có
\(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+1-\frac{1}{4}\)
\(=\left(x^2+2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\frac{3}{4}>0\)
Nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)hay \(x^2+x+1>0\)
mà theo đề bài \(x^2+x+1=0\)
Vậy \(x\in\varnothing\)
![](https://rs.olm.vn/images/avt/0.png?1311)
x2 - y2 - 4 + 4y = x2 - ( y2 - 4y + 4 ) = x2 - ( y - 2 )2 = ( x - y + 2 )( x + y - 2 )
x2 - y2 - 4 + 4y
= x2 - ( y 2 - 4y + 4 )
= x 2 - ( y - 2 )2
= ( x - y + 2 )( x + y - 2 )
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\frac{a}{abc+ab+a+1}=\frac{acd}{\left(abc+ab+a+1\right)cd}=\frac{acd}{abc^2d+abcd+acd+cd}\)
\(=\frac{acd}{c+1+acd+cd}\left(abcd=1\right)\)
\(\frac{b}{bcd+bc+b+1}=\frac{b}{bcd+bc+b+abcd}=\frac{1}{acd+cd+c+1}\)
\(\frac{d}{dab+da+d+1}=\frac{dc}{\left(dab+da+d+1\right)c}=\frac{dc}{abcd+acd+cd+c}=\frac{cd}{1+acd+cd+c}\)
=> \(\frac{acd}{acd+cd+c+1}+\frac{1}{acd+cd+c+1}+\frac{c}{acd+cd+c+1}+\frac{cd}{acd+cd+c+1}\)
=> đpcm