cho đường tròn tâm O , từ A ở ngoài đường tròn vẽ 2 tiếp tuyến AB, AC với đường tròn tâm O . kẻ dây CD//AB . Nối AD cắt đường tròn tâm O tại E. C/M:
a/ tứ giác ABOC nội tiếp
b/ AB2 = AE.AD
c/ \(\widehat{AOC}\)= \(\widehat{ACB}\) và tam giác BCD cân
2/ Cho tam giác ABC có các đường cao BD và CE , đường thẳng DE cắt đường tròn ngoại tiếp tam giác ABC tại M và N . C/m :
a. tứ giác BEDC nội tiếp
b. \(\widehat{DEA}\) = \(\widehat{ACB}\)
C.DE // tiếp tuyến tại A của đường tròn ngoại tiếp tam giác ABC
a) Xét (O) có :
AB là tiếp tuyến tại B
AC là tiếp tuyến tại C
AB cắt AC tại A
\(\Rightarrow\widehat{ABO}=\widehat{ACO}=90^o\)và OA là p/g \(\widehat{BOC}\)
Xét tg ABOC có \(\widehat{ABO}+\widehat{ACO}=180^o\)Mà 2 góc này đối nhau
\(\Rightarrow\)ABOC là tg nt
b) Xét (O) có
\(\widehat{ABE}\)là góc tạo bởi tiếp tuyến AB và dây BE
\(\widehat{BDE}\)là góc nt chắn cung BE
\(\Rightarrow\widehat{ABE}=\widehat{BDE}=\frac{1}{2}sđ\widebat{BE}\)
Xét \(\Delta ABEvà\Delta ADB:\)
\(\widehat{BAD}\)chung
\(\widehat{ABE}=\widehat{BDE}\)
\(\Rightarrow\Delta ABE\infty\Delta ADB\left(gg\right)\)
\(\Rightarrow\frac{AB}{AD}=\frac{AE}{AB}\Rightarrow AB^2=AD.AE\)
c) Vì OA là p/g \(\widehat{BOC}\Rightarrow\widehat{BOA}=\widehat{COA}=\frac{\widehat{BOC}}{2}\)
Do ABOC là tg nt\(\Rightarrow\widehat{BOA}=\widehat{BCA}\)(cùng chắn cung AB)
Suy ra \(\widehat{AOC}=\widehat{ACB}\)