quy đồng mẫu thức sau
1 / -x mũ 2 + 3x - 2 , 1 / x mũ 2 + 5x - 6 , 1 / -x mũ 2 + 4x -3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x^2-2x+1}=\frac{1}{\left(x-1\right)^2}\)( ĐKXĐ : x ≠ 1 )
\(\frac{2}{x^2+2x}=\frac{2}{x\left(x+2\right)}\)( ĐKXĐ : x ≠ 0 ; x ≠ -2 )
MTC : x( x + 2 )( x - 1 )2
a) x2 + 7x + 12
= x2 + 3x + 4x + 12
= ( x2 + 3x ) + ( 4x + 12 )
= x( x + 3 ) + 4( x + 3 )
= ( x + 3 )( x + 4 )
b) x4 + 8x2 + 16
= ( x2 )2 + 2.x2.4 + 42
= ( x2 + 4 )2
c) x2 + 26x + 25
= x2 + x + 25x + 25
= ( x2 + x ) + ( 25x + 25 )
= x( x + 1 ) + 25( x + 1 )
= ( x + 1 )( x + 25 )
a) \(x^2+7x+12\)
\(x^2+4x+3x+12\)
\(x\left(x+4\right)+3\left(x+4\right)\)
\(\left(x+4\right)\left(x+3\right)\)
b) \(x^4+8x^2+16\)
\(\left(x^2+4\right)^2\)
c) \(x^2+26x+25\)
\(x^2+x+25x+25\)
\(x\left(x+1\right)+25\left(x+1\right)\)
\(\left(x+25\right)\left(x+1\right)\)
\(2x^2+4y^2-4xy+x-4y=-\frac{5}{4}\)
\(\Leftrightarrow\text{}x^2-x+\frac{1}{4}+x^2-2x\left(2y-1\right)+4y^2-4y+1=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\left(x-2y+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\x-2y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}\end{cases}}}\)
Ta có : x2 - x + 1
= x2 - x + 1/4 + 3/4
= ( x2 - x + 1/4 ) + 3/4
= ( x - 1/2 )2 + 3/4 ≥ 3/4 ∀ x
Dấu "=" xảy ra khi x = 1/2
=> GTNN của biểu thức = 3/4 <=> x = 1/2
\(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0\forall x\)
Dấu ''='' xãy ra <=> \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Vậy GTNN của biểu thức là 3/4 <=> x = 1/2
( x - 10 )2 - x( x + 80 )
= x2 - 20x + 100 - x2 - 80x
= -100x + 100
Với x = 0, 98 = 98/100
=> Giá trị biểu thức = -100.98/100 + 100 = -98 + 100 = 2
Ta có :
\(\left(x-10\right)^2-x\left(x+80\right)=x^2-20x+100-x^2-80x=-100x+100=-100\left(x-1\right)\)
Thay x = 0,98 vào biểu thức trên ta được :
\(-100\left(0,98-1\right)\approx0,2\)
\(\frac{1}{-x^2+3x-2}=\frac{-1}{x^2-3x+2}=\frac{-1}{x^2-x-2x+2}=\frac{-1}{x\left(x-1\right)-2\left(x-1\right)}=\frac{-1}{\left(x-1\right)\left(x-2\right)}\)
( ĐKXĐ : x ≠ 1 ; x ≠ 2 )
\(\frac{1}{x^2+5x-6}=\frac{1}{x^2-x+6x-6}=\frac{1}{x\left(x-1\right)+6\left(x-1\right)}=\frac{1}{\left(x-1\right)\left(x+6\right)}\)
( ĐKXĐ : x ≠ 1 ; x ≠ -6 )
\(\frac{1}{-x^2+4x-3}=\frac{-1}{x^2-4x+3}=\frac{-1}{x^2-x-3x+3}=\frac{-1}{x\left(x-1\right)-3\left(x-1\right)}=\frac{-1}{\left(x-1\right)\left(x-3\right)}\)
( ĐKXĐ : x ≠ 1 ; x ≠ 3 )
MTC : ( x - 1 )( x - 2 )( x - 3 )( x + 6 )
=> \(\frac{-1}{\left(x-1\right)\left(x-2\right)}=\frac{-1\left(x+6\right)\left(x-3\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x+6\right)}=\frac{-x^2-3x+18}{\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x+6\right)}\)
=>\(\frac{1}{\left(x-1\right)\left(x+6\right)}=\frac{1\left(x-2\right)\left(x-3\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x+6\right)}=\frac{x^2-5x+6}{\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x+6\right)}\)
=> \(\frac{-1}{\left(x-1\right)\left(x-3\right)}=\frac{-1\left(x-2\right)\left(x+6\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x+6\right)}=\frac{-x^2-4x+12}{\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x+6\right)}\)