K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2023

\(2\sqrt[]{37+20\sqrt[]{3}}-\sqrt[]{73-40\sqrt[]{3}}\)

\(=2\sqrt[]{25+2.5.2\sqrt[]{3}+12}-\sqrt[]{48-2.5.4\sqrt[]{3}+25}\)

\(=2\sqrt[]{\left(5+2\sqrt[]{3}\right)^2}-\sqrt[]{\left(5-4\sqrt[]{3}\right)^2}\)

\(=2\left|5+2\sqrt[]{3}\right|-\left|5-4\sqrt[]{3}\right|\)

\(=2\left(5+2\sqrt[]{3}\right)-\left(4\sqrt[]{3}-5\right)\left(vì.4\sqrt[]{3}>5\right)\)

\(=10+4\sqrt[]{3}-4\sqrt[]{3}+5\)

\(=15\)

9 tháng 9 2023

\(R_B=3R_A\)

Chu vi hình tròn A : \(C_A=2\pi R_A\)

Chu vi hình tròn B : \(C_B=2\pi R_B=2\pi.3R_A=3C_A\)

Vậy hình A lăn xung quanh hình B, nó phải quay 3 vòng để trở lại điểm xuất phát

9 tháng 9 2023

Mặc dù B gấp 3 lần bán kính A nhưng quãng đường mà đường tròn A lăn không phải là chu vi của B mà là hình tròn có tổng bán kính của A và B.

Bán kính của hình tròn A phải lăn gấp bán kính của A số lần là:

\(\left(3+1\right)=4\left(lần\right)\)

Vậy A sẽ phải mất số vòng quay là:

\(\dfrac{4\pi}{1\pi}=4\) (vòng)

8 tháng 9 2023

a) Ta thấy \(OE=OF\Rightarrow\) O thuộc trung trực của EF.

 Mặt khác, theo tính chất của 2 tiếp tuyến cắt nhau, \(ME=MF\), suy ra M cũng nằm trên trung trực của EF.

 \(\Rightarrow\)OM là trung trực của EF. Mà OM cắt EF tại H nên H là trung điểm EF (đpcm)

b) Ta thấy \(\widehat{OAM}+\widehat{OFM}=90^o+90^o=180^o\)  nên tứ giác OAMF nội tiếp hay 4 điểm O, M, A, F cùng thuộc 1 đường tròn.

c) Vì OM là trung trực EF nên \(OM\perp EF\) tại H \(\Rightarrow\widehat{MHK}=90^o\)

Từ đó dễ thấy tứ giác AMHK nội tiếp \(\Rightarrow OA.OK=OH.OM\)

Mà \(OH.OM=OE^2=R^2\) (hệ thức lượng trong tam giác vuông)

\(\Rightarrow OA.OK=R^2\) (đpcm)

 

0
8 tháng 9 2023

\(\dfrac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\dfrac{19}{49}\left(1\right)\)

\(Đkxđ:x\ne2009;x\ne2010\)

Đặt \(t=x-2010\left(t\ne0\right)\)

\(\Rightarrow2009-x=-\left(t+1\right)\)

\(\left(1\right)\Leftrightarrow\dfrac{\left(t+1\right)^2-\left(t+1\right)t+t^2}{\left(t+1\right)^2+\left(t+1\right)t+t^2}=\dfrac{19}{49}\)

\(\Leftrightarrow\dfrac{t^2+2t+1-t^2-t+t^2}{t^2+2t+1+t^2+t+t^2}=\dfrac{19}{49}\)

\(\Leftrightarrow\dfrac{t^2+t+1}{3t^2+3t+1}=\dfrac{19}{49}\)

\(\Leftrightarrow49t^2+49t+49=57t^2+57t+19\)

\(\Leftrightarrow8t^2+8t-30=0\)

\(\Leftrightarrow4t^2+4t-15=0\)

\(\Leftrightarrow\left(4t^2+4t+1\right)-16=0\)

\(\Leftrightarrow\left(2t+1\right)^2=16=4^2\)

\(\Leftrightarrow\left[{}\begin{matrix}2t+1=4\\2t+1=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{3}{2}\\t=-\dfrac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2010=\dfrac{3}{2}\\x-2010=-\dfrac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4023}{2}\\x=\dfrac{4015}{2}\end{matrix}\right.\)

7 tháng 9 2023

Trước tiên ta đi chứng minh BĐT phụ là:

Với a,b>0�,�>0 thì a2+b4ab(a2+b2)�2+�4≥��(�2+�2)

Cách CM:

BĐT trên tương đương với: (ab)2(a2+ab+b2)0(�−�)2(�2+��+�2)≥0 (luôn đúng)

Quay trở về bài toán chính: Áp dụng BĐT phụ trên :

ca4+b4+ccab(a2+b2)+c2ab=cab(a2+b2+c2)=c2a2+b2+c2⇒��4+�4+�≤���(�2+�2)+�2��=���(�2+�2+�2)=�2�2+�2+�2

Thực hiện tương tự với các phân thức còn lại và cộng theo vế:

Ta2+b2+c2a2+b2+c2=1⇒�≤�2+�2+�2�2+�2+�2=1 (đpcm)

Dấu bằng xảy ra khi a=b=c=1

7 tháng 9 2023

loading...

Nó bị mất cái dấu gạch ngang chỗ phân số nha b

1
8 tháng 9 2023

a) \(A=\sqrt[]{\left(\sqrt[]{3}-2\right)^2}-\sqrt[]{3}+\sqrt[]{12}\)

\(\Leftrightarrow A=\left|\sqrt[]{3}-2\right|-\sqrt[]{3}+2\sqrt[]{3}\)

\(\Leftrightarrow A=2-\sqrt[]{3}-\sqrt[]{3}+2\sqrt[]{3}\left(2^2=4>\left(\sqrt[]{3}\right)^2=3\right)\)

\(\Leftrightarrow A=2\)

\(B=\left(\dfrac{3\sqrt[]{x}}{\sqrt[]{x}-1}-\dfrac{1}{\sqrt[]{x}+1}-3\right).\dfrac{\sqrt[]{x}+1}{\sqrt[]{x}+2}\left(x\ge0;x\ne1\right)\)

\(\Leftrightarrow B=\left(\dfrac{3\sqrt[]{x}\left(\sqrt[]{x}+1\right)-\left(\sqrt[]{x}-1\right)-3\left(x-1\right)}{\left(\sqrt[]{x}-1\right)\left(\sqrt[]{x}+1\right)}\right).\dfrac{\sqrt[]{x}+1}{\sqrt[]{x}+2}\)

\(\Leftrightarrow B=\left(\dfrac{3x+3\sqrt[]{x}-\sqrt[]{x}+1-3x+3}{\sqrt[]{x}-1}\right).\dfrac{1}{\sqrt[]{x}+2}\)

\(\Leftrightarrow B=\dfrac{2\sqrt[]{x}+4}{\sqrt[]{x}-1}.\dfrac{1}{\sqrt[]{x}+2}\)

\(\Leftrightarrow B=\dfrac{2\left(\sqrt[]{x}+2\right)}{\sqrt[]{x}-1}.\dfrac{1}{\sqrt[]{x}+2}\)

\(\Leftrightarrow B=\dfrac{2}{\sqrt[]{x}-1}\)

b) \(B< -A\)

\(\Leftrightarrow\dfrac{2}{\sqrt[]{x}-1}< -2\) \(\left(x\ge0;x\ne1\right)\)

\(\Leftrightarrow\dfrac{2}{\sqrt[]{x}-1}+2< 0\)

\(\Leftrightarrow\dfrac{2\sqrt[]{x}}{\sqrt[]{x}-1}< 0\)

\(\Leftrightarrow0< \sqrt[]{x}< 1\)

\(\Leftrightarrow0< x< 1\left(thỏa.đkxd\right)\)

7 tháng 9 2023

 Dễ thấy \(\widehat{HKF}=\widehat{HCM}\) (cùng phụ với \(\widehat{ABC}\))

 Xét tam giác HKF và HCM, có: \(\widehat{KHF}=\widehat{CHM}\left(=90^o\right)\) và \(\widehat{HKF}=\widehat{HCM}\) (cmt)

 Suy ra \(\Delta HKF~\Delta HCM\left(g.g\right)\)

\(\Rightarrow\dfrac{HK}{HC}=\dfrac{HF}{HM}\) \(\Rightarrow HK.HM=HC.HF\)

 Mà \(HC.HF\le\dfrac{\left(HC+HF\right)^2}{4}=\dfrac{FC^2}{4}\) (BĐT Cô-si), suy ra \(HK.HM\le\dfrac{FC^2}{4}\) (đpcm)

 Dấu "=" xảy ra \(\Leftrightarrow HC=HF\) \(\Leftrightarrow\) H là trung điểm CF \(\Leftrightarrow\Delta KFC\) cân tại K.