CHỨNG MINH BĐT NESBIT VỚI \(a,b,c\inℝ\left(a,b,c\ne0\right)\)
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Nhớ nhìn kỹ điều khiện là \(a,b,c\inℝ\)và khác 0 nhe
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài là a (a khác 0) (m)
chiều rộng là a - 4 (m)
Diện tích là a . (a - 4) (m2)
Mà diện tích mảnh vườn bằng 320 m2 nên ta có pt:
a . (a - 4) = 320
Giải pt => a = 20
chiều dài là 20 m; chiều rộng là 16 m.
1,
a) Ta có \(a^2-ab+b^2=\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\)
Dấu "=" xảy ra khi a=b=0, trái với a3+b3>0
=> a2-ab+b2>0, mà
a3+b3=(a+b)(a2-ab+b2)>0
=> a+b>0
Lại có a,b thuộc Z nên a2-ab+b2 >= 1 nên a3+b3 >=a+b
Dấu "=" xảy ra khi (a;b) \(\in\){(1;1);(1;0);(0;1)}
b) Ta xét 2 TH
-Nếu ab =< 0, ta có:
a3+b3=(a+b)(a2-ab+b2) >= (a+b)(a2+b2)>= a2+b2, do a+b >=1
-Nếu ab>0 kết hợp với a+b>0 => a>0; b>0 dẫn tới a+b >=2
=> a3+b3=(a+b)(a2-ab+b2) >=2(a2-ab+b2)
=a2+b2+(a-b)2 >= a2+b2
Dẫn tới a3+b3 >= a2+b2
Dấu "=" xảy ra khi (a;b) \(\in\){(1;1);(1;0);(0;1)}
\(\frac{1}{\sqrt{2}+\sqrt{2-\sqrt{2}}}=\frac{\sqrt{2}-\sqrt{2-\sqrt{2}}}{2-\left(2-\sqrt{2}\right)}=\frac{\sqrt{2}-\sqrt{2-\sqrt{2}}}{\sqrt{2}}\)
Đổi \(30p=\frac{1}{2}h\)
Gọi quãng đường AB là: x(km) (x>0)
Thời gian lúc đi của ô tô là: \(\frac{x}{55}\left(h\right)\)
Thời gian lúc về của ô tô là: \(\frac{x}{60}\left(h\right)\)
Vì thời gian về ít hơn thời gian đi là 30 phút, ta có phương trình:
\(\frac{x}{55}-\frac{x}{60}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{55}x-\frac{1}{60}x=\frac{1}{2}\)
\(\Leftrightarrow\left(\frac{1}{55}-\frac{1}{60}\right)x=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{660}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{2}:\frac{1}{660}\)
\(\Leftrightarrow x=330\) ( nhận )
Vậy quãng đường AB dài 330km .
pt có hai nghiệm pb khi đen-ta >0
=> 4(m+5)^2-24m+120>0
<=>4m^2+40m+100-24m+120>0
<=>4m^2+16m+220>0
<=>m^2+4m+55>0
<=>(m+2)^2+51>0 lđ
học tốt
" m " ở đâu vậy bạn ,sửa đề câu b) : Tìm x để P =\(A-9\sqrt{x}\)
Bài giải
a) ĐKXĐ: \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
A = \(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
= \(\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
= \(\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
= \(\frac{\sqrt{x}-1}{\sqrt{x}}\)
Vậy A = \(\frac{\sqrt{x}-1}{\sqrt{x}}\)với x > 0 ; x \(\ne1\)
b) P = A - \(9\sqrt{x}=\frac{\sqrt{x}-1}{\sqrt{x}}-9\sqrt{x}=1-\left(\frac{1}{\sqrt{x}}+9\sqrt{x}\right)\)
Áp dụng BĐT Côsi : \(\frac{1}{\sqrt{x}}+9\sqrt{x}\ge2.3=6\)
Dấu "=" xảy ra khi \(\frac{1}{\sqrt{x}}=9\sqrt{x}\Leftrightarrow1=9x\Leftrightarrow x=\frac{1}{9}\)
=> P \(\ge-5\).Vậy Max P = -5 khi x = \(\frac{1}{9}\)
mình lớp 5 nên mình ko biếu xui quá
Bạn ra đề rất tùy tiện và không chịu check lại BĐT trước khi đăng:(
BĐT trên sai với [a = -1, b = -2, c = 3] thì Vế trái - Vế phải = -9/2 < 0.