Cho \(\Delta ABC\), trực tâm H. Đường tròn (O) bất kì đi qua B,C cắt các cạnh AB, AC lần lượt tại D và E\(\left(D\ne B;E\ne C\right)\). Gọi K là trực tâm của \(\Delta ADE\). Chứng minh rằng BE, CD, HK đồng quy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D E I K J H M O
gọi các điểm như trên hình
I là giao 2 đường tiếp tuyến HI và AC=>OI là phân giác góc EOK (1) và IE=IK
C là giao 2 tiếp tuyến AC và BC => OC là phân giác góc KOD (2) và KC=DC
(1) và (2) => tam giác IOC vuông tại O, có đường cao OK =>OK2=IK.KC <=> OK2=IE.DC
CM tương tự ta được OJ2 = EH.BD
mà \(\text{OK=OJ=r}\)
=>\(\text{IE.DC=EH.BD}\)
=>\(\frac{EH}{EI}=\frac{CD}{BD}\)
Ta có : \(\text{HI // BC}\)
=>\(\frac{EI}{MC}=\frac{AI}{AC}=\frac{AH}{AB}=\frac{EH}{BM}\)
=> \(\frac{BM}{MC}=\frac{EH}{EI}\)
=>\(\frac{BM}{CM}=\frac{EH}{EI}=\frac{CD}{BD}\)
=> \(1+\frac{BM}{CM}=1+\frac{CD}{BD}\)\(\Leftrightarrow\frac{BC}{CM}=\frac{BC}{BD}\Rightarrow CM=BD\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{48-2.3\sqrt{5}.\sqrt{3}}-\sqrt{45}+\sqrt{18}=\sqrt{\left(3\sqrt{5}-\sqrt{3}\right)^2}-3\sqrt{5}+3\sqrt{2}\)
\(=|3\sqrt{5}-\sqrt{3}|-3\sqrt{5}+3\sqrt{2}=3\sqrt{5}-\sqrt{3}-3\sqrt{5}+3\sqrt{2}=3\sqrt{2}-\sqrt{3}\)
học tốt
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
gọi vận tốc của tàu thủy khi nước lăng là a(a>2)(km/h)
thời gian đi xuôi dòng là: 48/(a+2) (h)
ngược dòng là 48/(a-2) (h)
ta có:48/(a-2)-48/(a+2)=2
<=>1/(a-2)-1/(a+2)=1/24
bạn tiếp tục lm tip nha mik bận roy học tốt
Gợi ý :
Cậu kẻ thêm các hbh HBMC , IHCN là làm đc nhá'
##
tớ củng đang thắc mcs bì nay đây