Cho (c) : (x-3)2+(y-1)2=9 và điểm A(2;2)
Viết phương trình d qua A và d cắt (c) theo một dây cung có độ dài nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\frac{x+2}{x-4}\le0\\x-2< 0\end{cases}}\), điều kiện \(x\ne4\)
\(\Leftrightarrow\hept{\begin{cases}-2\le x< 4\\x< 2\end{cases}}\Leftrightarrow-2\le x< 2\)
\(S=[-2;2)\)
\(A\left(x_a;y_a\right)\Rightarrow\overrightarrow{IA}=x_a\overrightarrow{i}+y_a\overrightarrow{j}\)
\(B\left(x_b;y_b\right)\Rightarrow\overrightarrow{IB}=x_b\overrightarrow{i}+y_b\overrightarrow{j}\)(Với \(\overrightarrow{i};\overrightarrow{j}\)là hai vector đơn vị của trục Ox,Oy)
\(\Rightarrow\overrightarrow{AB}=\overrightarrow{IB}-\overrightarrow{IA}=\left(x_b-x_a\right)\overrightarrow{i}+\left(y_b-y_a\right)\overrightarrow{j}\)
Vậy tọa độ của vector AB là \(\overrightarrow{AB}=\left(x_b-x_a;y_b-y_a\right).\)
Áp dụng BĐT Cosi, ta có:
\(\frac{a}{9}\)+\(\frac{1}{a}\)>= 2.\(\frac{1}{3}\)=\(\frac{2}{3}\)
=> a+\(\frac{1}{a}\)=\(\frac{a}{9}\)+\(\frac{8a}{9}\)+\(\frac{1}{a}\)>= \(\frac{2}{3}\)+\(\frac{8a}{9}\)>= \(\frac{2}{3}\)+\(\frac{8.3}{9}\)=\(\frac{10}{3}\)
Vậy GTNN của P là: \(\frac{10}{3}\), tại a=3
I(3;1) (C) A(2;2) H B C d
Ta thấy \(AI^2=2< R^2\)=> A nằm trong đường tròn (C)
Gọi BC là một dây cung bất kì đi qua A, H là trung điểm BC
Ta có \(BC^2=4HB^2=4\left(R^2-HI^2\right)\ge4\left(R^2-AI^2\right)=4\left(9-2\right)=28\)(không đổi)
Vậy độ dài nhỏ nhất của dây BC bằng \(2\sqrt{7}\), đạt được khi d vuông góc với IA
Đường thẳng d: đi qua \(A\left(2;2\right)\), VTPT \(\overrightarrow{AI}=\left(1;-1\right)\Rightarrow d:x-y=0\)