Cho các số thực dương a,b,c thỏa mãn điều kiện:\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)< 10\).Chứng minh rằng a,b,c là độ dài 3 cạnh của một tam giác
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
20 tháng 4 2020
Bài giải
Ta có : \(\hept{\begin{cases}x_1.x_2=m^2+3\\x_1+x_2=2\left(m+1\right)\end{cases}}\)
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{8}{x_1.x_2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}=\frac{8}{x_1.x_2}\)
<=> ( x1 + x2 ) 2 -2x1x2 = 8
<=>4(m+1)2 -2(m2+ 3 ) = 8 <=> 2m2 + 8m - 10=0
<=> \(\orbr{\begin{cases}m=1\\m=-5\left(L\right)\end{cases}}\)
20 tháng 4 2020
Bài giải
Phương trình có 2 nghiệm x1; x2
<=> \(\Delta'>0\Leftrightarrow\left(m+1\right)^2-m^2-3\ge0\)
<=> 2m - 2 \(\ge0\)
<=> m \(\ge1\)
TT
3
19 tháng 4 2020
Bài làm
\(\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow x-3=3-x\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
Vậy x = 3 là nghiệm.
Ta có : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\left(3+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)< 10\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}< 7\)
\(\Leftrightarrow\frac{a+c}{b}+\frac{b+a}{c}+\frac{c+b}{a}< 7\)
Không giảm tổng quá .Giả sử a là cạnh lớn nhất .Giả b + c < a => 0 < \(\frac{b+c}{a}\)
\(\Rightarrow\frac{a+c}{b}+\frac{b+a}{c}+\frac{c+b}{a}>\frac{2c+b}{b}+\frac{2b+c}{c}+\frac{b+c}{a}\)( không chắc lắm )
= \(\frac{2c}{b}+\frac{2b}{c}+\frac{b+c}{a}+2\)
=\(\frac{2\left(b+c\right)^2}{bc}+\frac{b+c}{a}-2>7\left(VL\right)\)
=>b+ c > a => a ; b ; c là 3 cạnh tam giác ( đpcm )