Tìm x, y thỏa mãn đẳng thức: 5x^2 + 5y^2 + 8xy + 2y - 2x = 2 = 0.
Tính giá trị biểu thức A=(x+y)^2014+(x-2)^2015+(y+1)^2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chia hết rồi sao lại dư :))? tớ sửa lại đề nhé ! có đúng ko thì ko bt :P
\(4x^2+ax+b⋮x-2\)
4x^2 + ax + b x - 2 4x + 1 4x^2 - 8x x( a + b ) + b x - 2 x( a + b ) - x + 2 + b
Để \(4x^2+ax+b⋮x-2\)
<=> \(x\left(a+b\right)-x+2+b=0\)
<=> \(ax+bx-x+2+b=0\)
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x^2+4x+5x+20}+\frac{1}{x^2+5x+6x+30}+\frac{1}{x^2+7x+6x+42}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x\left(x+4\right)+5\left(x+4\right)}+\frac{1}{x\left(x+5\right)+6\left(x+5\right)}+\frac{1}{x\left(x+7\right)+6\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{\left(x+6\right)+\left(x+4\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)\(\Leftrightarrow\frac{2x+10}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{2\left(x+5\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{2}{\left(x+4\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{2\left(x+7\right)+\left(x+4\right)}{\left(x+4\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3x+18}{\left(x+4\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3\left(x+6\right)}{\left(x+4\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\left(x+4\right)\left(x+7\right)=54\)
\(\Leftrightarrow x^2+11x+28=54\)
\(\Leftrightarrow x^2+11x+30.25=56.25\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+5.5\right)^2=\left(7.5\right)^2\\\left(x+5.5\right)^2=\left(-7.5\right)^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+5.5=7.5\\x+5.5=-7.5\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=7.5-5.5=2\\x=-7.5-5.5=-13\end{cases}}\)
\(\text{Vậy x }\in\left\{2;-13\right\}\)
\(x-x^2-2\)
\(=x-\left(x^2+2\right)\)
Ta có : \(x^2\ge0\forall x\)
\(\Rightarrow x^2+2\ge0\)
mà \(x\le x^2\)
\(\Rightarrow x< x^2+2\)
\(\Rightarrow x-\left(x^2+2\right)< 0\)
\(\Rightarrow x-x^2-2< 0\)
Ta có: \(x-x^2-2=x-x^2-\frac{1}{4}-\frac{7}{4}\)
\(=\left(x-x^2-\frac{1}{4}\right)-\frac{7}{4}=-\left(x^2-x+\frac{1}{4}\right)-\frac{7}{4}\)
\(=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)-\frac{7}{4}=-\left(x-\frac{1}{2}\right)^2-\frac{7}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2-\frac{7}{4}\le-\frac{7}{4}\)\(\forall x\)
\(\Rightarrow x-x^2-2\le-\frac{7}{4}\)\(\forall x\)
hay \(x-x^2-2< 0\)( đpcm )
Bài làm
Xét tam giác MNQ ta có :
E là trung điểm MN
H là trung điểm MQ
=)) EH là đường TB tam giác MNQ
=)) EH // QN và EH = 1/2 QN (1)
Xét tam giác PNQ ta có :
F là trung điểm MP
G là trung điểm QP
=)) FG là đường TB tam giác PNQ
=)) FG // NQ và FE = 1/2 NQ (2)
Từ 1 ; 2 =)) tứ giác EFGH là hình bình hành
Ta chứng minh bất đẳng thức phụ sau \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(*)
\(BĐT\)(*) \(< =>\frac{x+y}{xy}\ge\frac{4}{x+y}< =>\left(x+y\right)^2\ge4xy< =>\left(x-y\right)^2\ge0\)*đúng*
Sử dụng bất đẳng thức (*) ta có \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\); \(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c}\); \(\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\)
Cộng theo vế 3 bất đẳng thức trên ta được \(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\ge\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\)
\(< =>2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\right)\)
\(< =>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)(Dấu "=" xảy ra khi và chỉ khi \(a=b=c\))
Done!
Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có : ( bạn tự chứng minh )
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)*1*
\(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c}\)*2*
\(\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\)*3*
Cộng *1* , *2* , *3* theo vế ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\ge\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\)
<=> \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
<=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
Vậy ta có điều phải chứng minh
Đẳng thức xảy ra <=> a = b = c > 0
\(P=\left(x^2+4x+1\right)^2-12\left(x+2\right)^2+2093\)
\(=\left(x^2+4x+4-3\right)^2-12\left(x+2\right)^2+2093\)
\(=\left[\left(x+2\right)^2-3\right]^2-12\left(x+2\right)^2+2093\)
\(=\left(x+2\right)^4-6\left(x+2\right)^2+9-12\left(x+2\right)^2+2093\)
\(=\left(x+2\right)^4-18\left(x+2\right)^2+2102\)
\(=\left(x+2\right)^4-18\left(x+2\right)^2+81+2021\)
\(=\left[\left(x+2\right)^4-18\left(x+2\right)^2+81\right]+2021\)
\(=\left[\left(x+2\right)^2-9\right]^2+2021\)
\(=\left[\left(x+2-3\right)\left(x+2+3\right)\right]^2+2021\)
\(=\left[\left(x-1\right)\left(x+5\right)\right]^2+2021\)
Vì \(\left[\left(x-1\right)\left(x+5\right)\right]^2\ge0\forall x\)
\(\Rightarrow\left[\left(x-1\right)\left(x+5\right)\right]^2+2021\ge2021\)\(\forall x\)
hay \(P\ge2021\)
Dấu " = " xảy ra \(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
Vậy \(minP=2021\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
Ta có: \(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x+2y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=1\\y=-1\end{cases}}\)
Thay vào biểu thức A, ta có:
\(A=\left(1-1\right)^{2014}+\left(1-2\right)^{2015}+\left(-1+1\right)^{2016}\)
\(=0-1+0=-1\)
Vậy GTBT A=-1 tại x=1, y=-1