Tìm GTNN của biểu thức
X2+X\(\sqrt{3}\)+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
Thep phương pháp đưa về đồng bậc, có:
\(\hept{\begin{cases}4x^3-y^3=x+2y\\52x^2-82xy+21y^2=-9\end{cases}}\)
\(\Rightarrow\left(4x^3-y\right)\left(-9\right)=\left(52x^2-82xy+21y^2\right)\left(x+2y\right)\)
\(\Leftrightarrow8x^3+2x^2y-13xy^2+3y^3=0\)
\(\Leftrightarrow\left(4x-y\right)\left(x-y\right)\left(2x+3y\right)=0\)
\(\Rightarrow\)4x - y = 0 hoặc x - y = 0 hoặc 2x + 3y = 0
\(\Leftrightarrow\)4x = y hoặc x = y hoặc 2x = -3y
Bạn thay từng trường hợp vào hệ phương trình nha thì bạn sẽ thấy x = y ( thỏa mãn )
<=> ( x,y ) = ( 1; 1 ) ; ( -1 ; -1 ) là nghiệm của hpt.
~ Do tối rồi nên mik không thay được, bạn thông cảm nha ~
Bạn vào đây tham khảo
Câu hỏi của Mun's Hải's - Toán lớp 9 | Học trực tuyến
~ Vô thông kê của mik để vô link ~
\(x^2+x\sqrt{3}+1\)
\(=x^2+2\cdot x\cdot\frac{\sqrt{3}}{2}+\frac{3}{4}+\frac{1}{4}\)
\(=\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu "=" xảy ra tại \(x=-\frac{\sqrt{3}}{2}\)