1 Cho x,y,z > 0 . CMR : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{36}{9+x^2y^2+y^2z^2+z^2x^2}\)
2 . Cho a,b,c>0 thỏa mãn ab+bc+ac=1. CMR
\(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\le\frac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Gọi số nữ và số nam thuận tay trái lần lượt là x(người) và y(người).
Khi đó, do tổng số người thuận tay trái là 10 người nên ta có
x+y=10
Lại có số nữ thuận tay phải gấp 3 lần số nữ thuận tay trái nên số nữ thuận tay phải là 3x(người). Số nam thuận tay phải gấp 5 lần số nam thuận tay trái nên số nam thuận tay phải là 5y(người).
Lại có tổng số người thuận tay phải là 44 nên ta có :
\(3x+5y=44\)
Vậy ta có hệ
\(\hept{\begin{cases}x+y=10\\3x+5y=44\end{cases}}\)
Suy ra \(x=3,y=7\)
Vậy có 3 nữ thuận tay trái, 7 nam thuận tay trái.
Bài 2 :
\(\hept{\begin{cases}a^2+b^2+c^2=27\left(1\right)\\a+b+c=9\left(2\right)\end{cases}}\)
Áp dụng bất đẳng thức Cô si ta có :
\(2\left(a^2+b^2+c^2\right)=\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\)
\(\ge2ab+2bc+2ca\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Dấu " = " xảy ra <=> a=b=c
\(\left(2\right)\Leftrightarrow\left(a+b+c\right)^2=81\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=81\)
\(\Rightarrow81\le a^2+b^2+c^2+2\left(a^2+b^2+c^2\right)=3\left(a^2+b^2+c^2\right)\)
\(\Rightarrow27\le a^2+b^2+c^2\left(3\right)\)
Từ (1) và (3) => dấu " = " xảy ra => a=b=c=3
\(\Rightarrow B=\left(3-4\right)^{2018}+\left(3-4\right)^{2019}+\left(3-4\right)^{2020}\)
\(=1-1+1=1\)
Bài 1 :
Để phương trình có 2 nghiệm x1 , x2
\(\Rightarrow\Delta'=\left(-1\right)^2-\left(2m-1\right)\ge0\)
\(\Rightarrow m\le1\)
\(\Rightarrow\) Khi đó phương trình có 2 nghiệm x1 , x2 thỏa mãn
\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-1\end{cases}}\)
Mà \(3x_1+2x_2=1\Rightarrow x_1+2\left(x_1+x_2\right)=1\Rightarrow x_1+2.2=1\Rightarrow x_1=-3\)
Vì \(x_1=-3\) là 1 nghiệm của phương trình
\(\Rightarrow\left(-3\right)^2-2\left(-3\right)+2m-1=0\Rightarrow m=-7\)
Bài 2 :
\(ĐKXĐ:x\ne\pm4\)
Ta có :
\(\frac{2x-1}{x+4}-\frac{3x-1}{4-x}=5+\frac{96}{x^2-16}\)
\(\Rightarrow\frac{2x-1}{x+4}+\frac{3x-1}{x-4}=5+\frac{96}{\left(x-4\right)\left(x+4\right)}\)
\(\Rightarrow\frac{2x-1}{x+4}\left(x+4\right)\left(x-4\right)+\frac{96}{\left(x-4\right)\left(x+4\right)}\left(x+4\right)\left(x-4\right)\)
\(\Rightarrow\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)=5\left(x+4\right)\left(x-4\right)+96\)
\(\Rightarrow5x^2+2x=5x^2+16\)
\(\Rightarrow2x=16\)
\(\Rightarrow x=8\)
Đặt \(A=\frac{T}{M}\), ta có T>0 => \(T=\sqrt{T^2}\). Xét
\(T^2=\left(\sqrt[4]{8}+\sqrt{\sqrt{2}-1}\right)-2\sqrt{\left(\sqrt[4]{8}+\sqrt{\sqrt{2}-1}\right)}+\left(\sqrt[4]{8}-\sqrt{\sqrt{2}-1}\right)\)
\(=2\sqrt[4]{8}-2\sqrt{\sqrt{8}-\left(\sqrt{2}-1\right)}\)
\(=2\sqrt[4]{8}-2\sqrt{\sqrt{2}+1}\)
\(=2\left(\sqrt[4]{8}-\sqrt{\sqrt{2}+1}\right)\)
\(\Rightarrow T=\sqrt{2}\cdot\sqrt{\sqrt[4]{8}-2\sqrt{2}+1}\)
\(\Rightarrow A=\sqrt{2}\)
a) Vì AD là p/g \(\widehat{A}\Rightarrow\widehat{BAD}=\widehat{CAD}\left(1\right)\)
Xét (O) có \(\widehat{CAD}\)là góc nt chắn cung CD
\(\widehat{MCD}\)là góc tạo bởi tiếp tuyến CM và dây CD
\(\Rightarrow\widehat{CAD}=\widehat{MCD}\left(2\right)\)
Từ (1)(2) \(\Rightarrow\widehat{BAD}=\widehat{MCD}\)
Mà A và C là 2 đỉnh liên tiếp của tg ACMN
\(\Rightarrow\)ACMN là tg nt
b) Xét \(\Delta ADN\)có \(\widehat{ADN}+\widehat{DNA}+\widehat{DAN}=180^o\)
Lại có \(\widehat{CDA}\)là góc ngoài của \(\Delta ADN\)kề \(\widehat{ADN}\)
\(\Rightarrow\widehat{CDA}=\widehat{DAN}+\widehat{DNA}\)
Do đó \(\widehat{CDA}+\widehat{ADN}=180^o=\widehat{CDN}\)
\(\Rightarrow\)3 điểm N,D,C thẳng hàng
Bài 1 :
Bât đẳng thức cần chứng minh tương đương với :
( xy+yz + zx )(9 + x2y2 +z2y2 + x2z2 ) \(\ge\)36xyz
Áp dụng bất đẳng thức Côsi ta có :
xy+ yz + zx \(\ge3\sqrt[3]{x^2y^2z^2}\) ( 1)
Và 9 + x2y2 + z2y2 + x2z2 \(\ge12\sqrt[12]{x^4y^4z^4}\)
hay 9+ x2y2 + z2y2+ x2z2 \(\ge12\sqrt[3]{xyz}\) (2)
Do các vế đều dương ,từ (1) và (2) suy ra :
( xy + yz +zx )( 9+ x2y2 + z2y2 + x2z2 ) \(\ge36xyz\left(đpcm\right)\)
Dấu đẳng thức xảy ra khi và chỉ khi x = y =z = 1
Bài 2:
\(\hept{\begin{cases}a;b;c>0\\ab+bc+ca=1\end{cases}}\)
Có : \(\hept{\begin{cases}\sqrt{1+a^2}\ge\sqrt{2a}\Rightarrow\frac{a}{\sqrt{1+a^2}}\le\frac{\sqrt{3}}{2}a\\\sqrt{1+b^2}\ge\sqrt{2b}\Rightarrow\frac{b}{\sqrt{1+b^2}}\le\frac{\sqrt{3}}{2}b\\\sqrt{1+c^2}\ge\sqrt{2c}\Rightarrow\frac{c}{\sqrt{1+c^2}}\le\frac{\sqrt{3}}{2}c\end{cases}}\)
=> \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\le\frac{\sqrt{3}}{2}\left(a+b+c\right)\le\frac{\sqrt{3}}{2}.\frac{\sqrt{3}}{2}\left(ab+bc+ca\right)\)
=> \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\le\frac{3}{2}\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi a =b =c = \(\frac{1}{\sqrt{3}}\)