Cho đường tròn O vẽ dây AB =a và dây AC vuông góc với OB. Trên dây AC lấy E bất kì ,BE cắt đường tròn tại điểm thứ hai là D.Tính BE×BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4x}{4x^2-8x+7}+\frac{3x}{4x^2-10x+7}=1\)
\(\Leftrightarrow4x\left(4x^2-10x+7\right)+3x\left(4x^2-8x+7\right)=\left(4x^2-8x+7\right)\left(4x^2-10x+7\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}\)
Bài 1 :
Gọi x là bán kính quạt, y là độ dài cung tròn
Ta có chu vi quạt là 2x+y=80
Ta có công thức tính diện tích hình quạt:
\(S=\frac{\pi x^2\alpha}{360}\) và độ dài cung tròn:\(y=\frac{2\pi x\alpha}{360}\)
Ta có: \(\frac{2\pi xa}{360}+2x=80\)
\(\Leftrightarrow\alpha=\frac{14400-360x}{2\pi x}\)
\(\Rightarrow S=\frac{\pi x^2a}{360}=\frac{\pi.x^2.\frac{14400-360x}{2\pi x}}{360}\)
\(=\frac{\left(40-x\right)x}{2}=\frac{-x^2+40x}{2}=\frac{-\left(x^2-40x+400\right)}{2}+200\)
\(=\frac{-\left(x-20\right)^2}{2}+200\)
Vì \(\frac{-\left(x-20\right)^2}{2}\le0\forall x\)
=> \(S\le200\forall x\)
Dấu = xảy ra khi và chỉ khi x=20
\(\Rightarrow\alpha=\frac{180}{\pi}\)
\(\sqrt[3]{x+\frac{1}{2}}=16x^3-1\Leftrightarrow\sqrt[3]{x+\frac{1}{2}}-16x^3+1=0\Leftrightarrow x=0,5\)
\(x^3=2a+3x\sqrt[3]{a^2-\left(\frac{a+1}{3}\right)^2\left(\frac{8a-1}{3}\right)}\)
\(\Leftrightarrow x^3=2a+3x\cdot\frac{\sqrt[3]{\left(1-2a\right)^3}}{3}\)
\(\Leftrightarrow x^3=2a+x\left(1-2a\right)\)
\(\Leftrightarrow x^3+\left(2a-1\right)x-2a=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+2a\right)=0\)
\(\Leftrightarrow x-1=0\)(do \(x^2+x+2a\)vô nghiệm vì \(a>\frac{1}{8}\))
<=> x=1 nên là 1 số nguyên dương