K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2020

Chắc khó nhất ở chỗ: khử abc 

Theo dirichlet

a(b-1)(c-1) \(\ge0\)

=> abc  \(\ge\)ab + ac - a 

Thay vào ta có: \(25\left(a^2+b^2+c^2\right)+54abc+36\ge25\left(a^2+b^2+c^2\right)+54\left(ab+bc-a\right)^2+36\)

Ta cần chứng minh: 

\(25\left(a^2+b^2+c^2\right)+54\left(ab+ac-a\right)+36\ge6\left(a+b+c\right)+49\left(ab+bc+ac\right)\) (1)

Đến đây thì có thể dùng nhiều cách: Vì mình cũng dễ thấy nghiệm có a = b = c = 1

Dùng trung bình nhân  ( hoặc cách khác) 

27 tháng 4 2020

SOS forever!

VT - VP

\(=\frac{\left(54bc+50a-49b-49c-6\right)^2}{100}-\frac{9\left(54bc+b-49c-6\right)^2\left(6c-11\right)}{5400c+100}+\frac{1350c\left(c-1\right)^2}{54c+1}\)

\(=\frac{\left(50a+50b-49c-6\right)^2}{100}+\frac{99\left(c-6\right)^2}{100}+9ab\left(6c-11\right)\)

Từ 2 đẳng thức trên có đpcm. Nếu muốn thì em gộp lại thành 1 biểu thức SOS giống a cho đẹp :D Tại hôm nay làm biếng nên viết tách ra, gộp mất công dò lại nhiều:v

27 tháng 4 2020

tự làm đcj ko,khó ghê.

chúc hok tốt nha

27 tháng 4 2020

thấy sai sai chỗ nao đó nhé ai ra câu  hỏi sữa dùm cái đi

27 tháng 4 2020

Mình nghĩ VP là -30

26 tháng 4 2020

\(\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\left(1\right)\)

ĐKXĐ: \(\frac{3}{2}\le x\le\frac{5}{2}\)

Áp dụng BĐT Bunhiacopxki ta có:

\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)

Dấu "=" xảy ra <=> \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)

Ta lại có VP=3x2-12x+14=3(x-2)2+2 >=2

Dấu "=" xảy ra khi x=2

Do đó VT=VP <=> x=2 (ttmđk)

Vậy S={2}

27 tháng 4 2020

Câu a ) 

\(2x^4+3x^2-2=0\left(1\right)\)

Đặt \(t=x^2\left(t\ge0\right)\) phương trình (1) trở thành:

\(2t^2+3t-2=0\)

\(\Leftrightarrow t\left(2t-1\right)+4t-2=0\)

\(\Leftrightarrow t\left(2t-1\right)+2\left(2t-1\right)=0\)

\(\Leftrightarrow\left(2t-1\right)\left(t+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2t-1=0\\t+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}t=\frac{1}{2}\\1=-2\left(loại\right)\end{cases}}\)

Với \(t=\frac{1}{2}\Leftrightarrow x^2=\frac{1}{2}\Rightarrow x=\pm\frac{\sqrt{2}}{2}\)

Vậy tập nghiệm của phương trình là  \(S=\left\{\pm\frac{\sqrt{2}}{2}\right\}\)

 
27 tháng 4 2020

Câu b ) 

\(\Delta=\left(m+1\right)^2-4m=m^2-2m+1=\left(m-1\right)^2\)

\(\Delta>0\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m\ne1\)

\(\hept{\begin{cases}x_1+x_2=m+1\\x_1x_2=m\end{cases}}\)

\(x_1=3x_2\Rightarrow3x_2+x_2=m+1\Leftrightarrow4x_2=m+1\)

\(\Leftrightarrow x_2=\frac{m+1}{4}\Rightarrow x_1=\frac{3\left(m+1\right)}{4}\)

\(x_1x_2=m\Leftrightarrow\frac{3\left(m+1\right)^2}{16}=m\)

\(\Leftrightarrow3m^2+6m+3=16m\)

\(\Leftrightarrow3m^2-10m+3=0\)

\(\Leftrightarrow\left(3m-1\right)\left(m-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{3}\\m=3\end{cases}\left(tm\right)}\)

26 tháng 4 2020

BĐT cần  chứng minh tương đương với :

\(\left(a^2b+b^2c+c^2a\right)\left(2+\frac{1}{a^2b^2c^2}\right)\ge9\)

\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)

Áp dụng BĐT Cô-si cho 3 số dương ,ta có :

\(a^2b+a^2b+\frac{1}{ab^2}\ge3\sqrt[3]{a^2b.a^2b.\frac{1}{ab^2}}=3a\)

tương tự :  \(b^2c+bc^2+\frac{1}{bc^2}\ge3b\)\(\left(c^2a+ca^2+\frac{1}{ca^2}\right)\ge3c\)

Cộng 3 BĐT trên theo vế, ta được :

\(2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge3\left(a+b+c\right)=9\)

Dấu "=" xảy ra khi a = b = c = 1