Một hình lăng trụ với đáy là tam giác vuông có chiều cao 4cm, chu vi đáy là 10cm. Tìm độ dài các cạnh đáy để thể tích hình lăng trụ lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn xem lại đề nhé! Mình nghĩ đề đúng là:
"a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm Min \(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)"
Bạn áp dụng BĐT AM-GM là ra nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
Để đường thẳng (d1) cắt đường thẳng (d2) thì:
\(a\ne a'\)
\(\Rightarrow3\ne1-2m\)
\(\Leftrightarrow2m\ne-2\)
\(\Leftrightarrow m\ne-1\)
Vậy \(m\ne-1\)thì đường thẳng (d1) và đường thẳng (d2) cắt nhau.
Họcc tốtt.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\hept{\begin{cases}\left(m+5\right)x+3y=1\\mx+2y=-4\end{cases}}\)
Để pt có nghiệm duy nhất => \(\frac{m+5}{m}\ne\frac{3}{2}\)
<=> 2(m+5)\(\ne\)3m
<=> 2m+10\(\ne\)3m
<=> m\(\ne\)10
Vậy với m khác 10 thì PT có nghiệm duy nhất
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình nghĩ đề là:
\(\hept{\begin{cases}m^2x+\left(m+1\right)y=m^2+3m\\-x-2y=m+5\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\hept{\begin{cases}3kx-2y=9\\-8x+3ky=7\end{cases}}\)(I)
Hệ phương trình (I) có nghiệm duy nhất khi:
\(\frac{a}{a'}\ne\frac{b}{b'}\)
\(\Rightarrow\frac{3k}{-8}\ne\frac{-2}{3k}\)
\(\Leftrightarrow3k.3k\ne\left(-2\right).\left(-8\right)\)
\(\Leftrightarrow9k^2\ne16\)
\(\Leftrightarrow k^2\ne\frac{16}{9}\)
\(\Leftrightarrow k\ne\frac{4}{3}\)hoặc \(k\ne-\frac{4}{3}\)
Vậy \(k\ne\frac{4}{3}\)và \(k\ne-\frac{4}{3}\) thì hệ phương trình (I) có nghiệm duy nhất.
Họcc tốtt.
![](https://rs.olm.vn/images/avt/0.png?1311)
Hệ phương trình có nghiệm duy nhất khi \(\frac{3}{m}\ne\frac{m}{-1}\)
\(\Leftrightarrow m^2\ne-3\forall m\)
Vậy hpt luôn có nguyên duy nhất với mọi m
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét
\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-6\right)=4m^2+4m+1-4m^2-4m+24=25>0\)
Vậy phương trình luôn có nghiệp với \(\forall m\)
Theo Viete ta có ngay \(x_1+x_2=2m+1;x_1x_2=m^2+m-6\)
Ta có biến đổi sau:
\(x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2=\left(2m+1\right)^2-3\left(m^2+m-6\right)\)
\(=4m^2+4m+1-3m^2-3m+18\)
\(=m^2-m+19=\left(m-\frac{1}{2}\right)^2+18,75>0\)
Vậy \(\left|x_1^3+x_2^3\right|=\left|m^2-m+19\right|=m^2-m+19\)
Khi đó ta có được \(m^2-m+19=50\Leftrightarrow m^2-m-31=0\)
Đến đây dễ rồi nè :)
ko biết