K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(|x^2|x+\dfrac{3}{4}||=x^2\)

=>\(x^2\cdot\left|x+\dfrac{3}{4}\right|=x^2\)

=>\(\left|x+\dfrac{3}{4}\right|=1\)

=>\(\left[{}\begin{matrix}x+\dfrac{3}{4}=1\\x+\dfrac{3}{4}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-\dfrac{7}{4}\end{matrix}\right.\)

15 tháng 8 2024

|\(x^2\).|\(x+\dfrac{3}{4}\)| |= \(x^2\)

\(x^2\).|\(x+\dfrac{3}{4}\)| = \(x^2\)

\(x^2\).|\(x+\dfrac{3}{4}\)| - \(x^2\) = 0

\(x^2\).(|\(x+\dfrac{3}{4}\)| - 1) = 0

\(\left[{}\begin{matrix}x=0\\\left|x+\dfrac{3}{4}\right|=1\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x+\dfrac{3}{4}=-1\\x+\dfrac{3}{4}=1\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x=-\dfrac{7}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\) 

Vậy \(x\) \(\in\) { - \(\dfrac{7}{4}\); 0; \(\dfrac{1}{4}\)}

 

 

16 tháng 8 2024

A B C D H E

Trên tia đối của AB lấy E sao cho AE=DC

Ta có DC//AB => DC//AE

=> AEDC là hình bình hành (Tứ giác có cặp cạnh đối // và = nhau là hbh)

Do ABCD là hình thang cân

\(\Rightarrow\widehat{BCD}=\widehat{ADC}\) (1)

Ta có AB//CD \(\Rightarrow\widehat{ADC}+\widehat{DAB}=180^o\) (2 góc trong cùng phí bù nhau) (2)

Mà \(\widehat{EAD}+\widehat{DAB}=\widehat{EAB}=180^o\) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{EAD}=\widehat{BCD}\)

Xét tg EAD và tg BCD có

AE = CD; \(\widehat{EAD}=\widehat{BCD}\left(cmt\right)\); AD = BC (gt)

=> tg EAD = tg BCD (c.g.c) => ED=BD => tg BDE cân tại D

Dựng \(DH\perp AB\left(H\in AB\right)\Rightarrow BH=EH=\dfrac{BE}{2}\) (trong tg cân đường cao hạ từ đỉnh tg cân đồng thời là đường trung tuyến)

Ta có

AE=CD \(\Rightarrow AB+CD=AB+AE=BE\)

\(DH=\dfrac{1}{2}\left(AB+CD\right)=\dfrac{1}{2}\left(AB+AE\right)=\dfrac{BE}{2}\)

\(\Rightarrow DH=BH=EH=\dfrac{BE}{2}\)

=> tg DHE và tg BHD là tg vuông cân tại H

\(\Rightarrow\widehat{DEH}=\widehat{EDH}=\widehat{BDH}=\widehat{DBH}=45^o\)

\(\Rightarrow\widehat{EDH}+\widehat{BDH}=\widehat{BDE}=45^o+45^o=90^o\Rightarrow ED\perp BD\)

Ta có

ED//AC (cạnh đối hbh AEDC)

\(\Rightarrow AC\perp BD\)

 

 

16 tháng 8 2024

\(\dfrac{1}{x^2\left(y-z\right)}=-\dfrac{3}{5}\Rightarrow x^2=-\dfrac{5}{3\left(y-z\right)}\)

\(\dfrac{1}{y^2\left(z-x\right)}=\dfrac{1}{3}\Rightarrow y^2=\dfrac{3}{\left(z-x\right)}\)

\(\dfrac{1}{z^2\left(x-y\right)}=3\Rightarrow z^2=\dfrac{1}{3\left(x-y\right)}\)

\(A=x^2.y^2.z^2=-\dfrac{5}{3\left(y-z\right)}.\dfrac{3}{z-x}.\dfrac{1}{3\left(x-y\right)}=\)

\(=-\dfrac{5}{3}.\dfrac{1}{\left(y-z\right)\left(z-x\right)\left(x-y\right)}=\)

15 tháng 8 2024

Cần gấp

p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2

Nếu p=3k+1 thì \(2p+1=2\left(3k+1\right)+1=6k+3=3\left(2k+1\right)⋮3\)

=>Loại

Vậy: p=3k+2

\(4p+1=4\left(3k+2\right)+1=12k+8+1=12k+9=3\left(4k+3\right)⋮3\)

=>4p+1 là hợp số

3AN=2CN

=>\(AN=\dfrac{2}{3}CN\)

=>\(AN=\dfrac{2}{5}AC\)

=>\(CN=\dfrac{3}{5}AC\)

CM=2BM

=>\(BM=\dfrac{1}{3}BC;CM=\dfrac{2}{3}BC\)

Vì \(CN=\dfrac{3}{5}AC\)

nên \(S_{MNC}=\dfrac{3}{5}\cdot S_{AMC}\)

=>\(S_{AMC}=30:\dfrac{3}{5}=50\left(cm^2\right)\)

Vì \(CM=\dfrac{2}{3}BC\)

nên BC=1,5CM

=>\(S_{ABC}=1,5\cdot S_{AMC}=1,5\cdot50=75\left(cm^2\right)\)

\(\left(\dfrac{3}{9}-\dfrac{1}{3}\right)\times\dfrac{2}{7}=\left(\dfrac{1}{3}-\dfrac{1}{3}\right)\times\dfrac{2}{7}=0\times\dfrac{2}{7}=0\)

a: Chiều rộng thửa ruộng là:

60x40%=24(m)

Diện tích thửa ruộng là 60x24=1440(m2)

 

15 tháng 8 2024

b; Vì chưa biết mỗi mét vuông thu được bao nhiêu số ki-lô-gam khoai tây nên số tiền thu được từ bán số khoai tây là không thể xác định. 

15 tháng 8 2024

Anh Hai làm được số phần trăm số sản phẩm của tổ là:

\(130:1500=\dfrac{13}{150}=\dfrac{1300\%}{150}\)

Đáp số: \(\dfrac{1300\%}{150}\)

15 tháng 8 2024

                            Giải:

Tỉ số phần trăm số sản phẩm anh Hai làm được và số sản phẩm của cả tổ là:

                         130 : 1500 = 0,0866...

                        0,0866... = 8,67%

Đáp số: 8,67%